Christians Elisabeth S., Yan Liang-Jun, Benjamin Ivor J.
Department of Internal Medicine, Molecular Cardiology Research Laboratories, the University of Texas Southwestern Medical Center, Dallas, TX.
Crit Care Med. 2002 Jan;30(1 Supp):S43-S50.
Life-threatening conditions cause severe changes in the organization and conformation of macromolecules, creating urgent requirements for protein repair to ensure survival. As molecular chaperones, heat shock proteins (HSP) that have specialized functions in protein folding are now well established to restore homeostasis in cells and organisms. Augmentation of HSP synthesis is tightly regulated by stress-inducible heat shock factors (HSF), which are part of a transcriptional signaling cascade with both positive (e.g., HSP) and negative (e.g., proinflammatory cytokines) properties. In this review, we discuss the biological roles and mechanisms of HSP-mediated protection in pathophysiologic conditions (ischemia, sepsis, and preeclampsia) and the regulation for stress-dependent HSP synthesis and speculate about future applications for harnessing HSF and HSP partners as cytoprotective agents. DATA SOURCES: Reactive oxygen species are major pathogenic factors in cell death pathways (e.g., necrosis, apoptosis), in part, because of proteotoxic effects. In intact organisms, forced overexpression of HSP per se affords effective counterbalance against ischemia challenges (e.g., heart and brain) and systemic conditions (e.g., sepsis). Besides stressful conditions, gene-targeting studies have uncovered new functions for heat shock transcription factors (e.g., maintenance of intrauterine pregnancy) in mammals. In parallel, pharmacologic studies using small molecules are paving the way for future prospects to exploit the beneficial properties of HSP, albeit an important but presently elusive goal. CONCLUSIONS: Together, HSF and HSP partners are attractive targets in therapeutic strategies designed to stimulate endogenous protective mechanisms against deleterious consequences of oxidative stress. With further technological advances, it is anticipated that the spotlight on HSP, alone or in combination with other stress response pathways, could, ultimately, reduce injury and accelerate functional recovery of susceptible organs in living organisms including humans.
危及生命的状况会导致大分子的组织和构象发生严重变化,从而迫切需要进行蛋白质修复以确保生存。作为分子伴侣,在蛋白质折叠中具有特殊功能的热休克蛋白(HSP)现已被充分证实能够恢复细胞和生物体的内环境稳态。热休克蛋白合成的增强受到应激诱导的热休克因子(HSF)的严格调控,HSF是转录信号级联反应的一部分,具有正性(如热休克蛋白)和负性(如促炎细胞因子)特性。在本综述中,我们讨论了热休克蛋白介导的保护在病理生理状况(缺血、脓毒症和子痫前期)中的生物学作用和机制,以及应激依赖性热休克蛋白合成的调控,并推测了利用热休克因子和热休克蛋白伴侣作为细胞保护剂的未来应用。
活性氧是细胞死亡途径(如坏死、凋亡)中的主要致病因素,部分原因是其蛋白毒性作用。在完整生物体中,热休克蛋白本身的强制过表达能有效对抗缺血挑战(如心脏和大脑)以及全身性状况(如脓毒症)。除应激状况外,基因靶向研究还揭示了热休克转录因子在哺乳动物中的新功能(如维持宫内妊娠)。与此同时,使用小分子的药理学研究为利用热休克蛋白的有益特性开辟了未来前景,尽管这是一个重要但目前难以实现的目标。
总之,热休克因子和热休克蛋白伴侣是旨在刺激内源性保护机制以对抗氧化应激有害后果的治疗策略中的有吸引力的靶点。随着技术的进一步进步,预计聚焦于热休克蛋白,单独或与其他应激反应途径联合,最终可能减少损伤并加速包括人类在内的生物体中易感器官的功能恢复。