Turkan Ali, Gong Xiaoming, Peng Tao, Roche Thomas E
Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506, USA.
J Biol Chem. 2002 Apr 26;277(17):14976-85. doi: 10.1074/jbc.M108434200. Epub 2002 Feb 12.
The inner lipoyl domain (L2) of the dihydrolipoyl acetyltransferase (E2) 60-mer forms a Ca(2+)-dependent complex with the pyruvate dehydrogenase phosphatase 1 (PDP1) or its catalytic subunit, PDP1c, in facilitating large enhancements of the activities of PDP1 (10-fold) or PDP1c (6-fold). L2 binding to PDP1 or PDP1c requires the lipoyl-lysine prosthetic group and specificity residues that distinguish L2 from the other lipoyl domains (L1 in E2 and L3 in the E3-binding component). The L2-surface structure contributing to binding was mapped by comparing the capacities of well folded mutant or lipoyl analog-substituted L2 domains to interfere with E2 activation by competitively binding to PDP1 or PDP1c. Our results reveal the critical importance of a regional set of residues near the lipoyl group and of the octanoyl but not the dithiolane ring structure of the lipoyl group. At the other end of the lipoyl domain, substitution of Glu(182) by alanine or glutamine removed L2 binding to PDP1 or PDP1c, and these substitutions for the neighboring Glu(179) also greatly hindered complex formation (E179A > E179Q). Among 11 substitutions in L2 at sites of major surface residue differences between the L1 and L2 domains, only the conversion of Val-Gln(181) located between the critical Glu(179) and Glu(182) to the aligned Ser-Leu sequence of the L1 domain greatly reduced L2 binding. Certain modified L2 altered E2 activation of PDP1 differently than PDP1c, supporting significant impact of the regulatory PDP1r subunit on PDP1 binding to L2. Our results indicate hydrophobic binding via the extended aliphatic structure of the lipoyl group and required adjacent L2 structure anchor PDP1 by acting in concert with an acidic cluster at the other end of the domain.
二氢硫辛酰胺乙酰转移酶(E2)60聚体的内部硫辛酰结构域(L2)与丙酮酸脱氢酶磷酸酶1(PDP1)或其催化亚基PDP1c形成钙依赖性复合物,极大地增强了PDP1(10倍)或PDP1c(6倍)的活性。L2与PDP1或PDP1c的结合需要硫辛酰赖氨酸辅基和将L2与其他硫辛酰结构域(E2中的L1和E3结合组分中的L3)区分开的特异性残基。通过比较折叠良好的突变体或硫辛酰类似物取代的L2结构域通过竞争性结合PDP1或PDP1c来干扰E2激活的能力,绘制了有助于结合的L2表面结构。我们的结果揭示了硫辛酰基团附近一组区域残基以及硫辛酰基团的辛酰基而非二硫杂环戊烷环结构的至关重要性。在硫辛酰结构域的另一端,用丙氨酸或谷氨酰胺取代Glu(182)消除了L2与PDP1或PDP1c的结合,并且对相邻的Glu(179)进行这些取代也极大地阻碍了复合物的形成(E179A>E179Q)。在L1和L2结构域主要表面残基差异位点的L2中的11个取代中,只有位于关键的Glu(179)和Glu(182)之间的Val-Gln(181)转换为L1结构域的对齐Ser-Leu序列大大降低了L2结合。某些修饰的L2对PDP1的E2激活与对PDP1c的激活不同,支持调节性PDP1r亚基对PDP1与L2结合的重大影响。我们的结果表明,通过硫辛酰基团的延伸脂肪族结构进行疏水结合以及所需相邻的L2结构通过与结构域另一端的酸性簇协同作用来锚定PDP1。