Suppr超能文献

基于新型学习自动机的反向传播算法参数自适应算法

New learning automata based algorithms for adaptation of backpropagation algorithm parameters.

作者信息

Meybodi M R, Beigy H

机构信息

Computer Engineering Department, Amirkabir University of Technology, Tehran, Iran.

出版信息

Int J Neural Syst. 2002 Feb;12(1):45-67. doi: 10.1142/S012906570200090X.

Abstract

One popular learning algorithm for feedforward neural networks is the backpropagation (BP) algorithm which includes parameters, learning rate (eta), momentum factor (alpha) and steepness parameter (lambda). The appropriate selections of these parameters have large effects on the convergence of the algorithm. Many techniques that adaptively adjust these parameters have been developed to increase speed of convergence. In this paper, we shall present several classes of learning automata based solutions to the problem of adaptation of BP algorithm parameters. By interconnection of learning automata to the feedforward neural networks, we use learning automata scheme for adjusting the parameters eta, alpha, and lambda based on the observation of random response of the neural networks. One of the important aspects of the proposed schemes is its ability to escape from local minima with high possibility during the training period. The feasibility of proposed methods is shown through simulations on several problems.

摘要

前馈神经网络一种流行的学习算法是反向传播(BP)算法,它包含参数,学习率(eta)、动量因子(alpha)和陡度参数(lambda)。这些参数的适当选择对算法的收敛有很大影响。已经开发了许多自适应调整这些参数的技术来提高收敛速度。在本文中,我们将提出几类基于学习自动机的解决方案,用于解决BP算法参数的自适应问题。通过将学习自动机与前馈神经网络互连,我们使用学习自动机方案根据神经网络的随机响应观察来调整参数eta、alpha和lambda。所提出方案的一个重要方面是其在训练期间有很高可能性逃离局部最小值的能力。通过对几个问题的仿真展示了所提方法的可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验