Suppr超能文献

自训练人工神经网络在多种有机化合物气相色谱相对保留时间建模中的应用。

Use of self-training artificial neural networks in modeling of gas chromatographic relative retention times of a variety of organic compounds.

作者信息

Jalali-Heravi M, Garkani-Nejad Z

机构信息

Department of Chemistry, Sharif University of Technology, Tehran, Iran.

出版信息

J Chromatogr A. 2002 Feb 1;945(1-2):173-84. doi: 10.1016/s0021-9673(01)01513-8.

Abstract

A quantitative structure-activity relationship study based on multiple linear regression (MLR), artificial neural network (ANN), and self-training artificial neural network (STANN) techniques was carried out for the prediction of gas chromatographic relative retention times of 13 different classes of organic compounds. The five descriptors appearing in the selected MLR model are molecular density, Winer number, boiling point, polarizability and square of polarizability. A 5-6-1 ANN and a 5-4-1 STANN were generated using the five descriptors appearing in the MLR model as inputs. Comparison of the standard errors and correlation coefficients shows the superiority of ANN and STANN over the MLR model. This is due to the fact that the retention behaviors of molecules show non-linear characteristics. Inspection of the results of STANN and ANN shows there are few differences between these methods. However, optimization of STANN is much faster and the number of adjustable parameters for this technique is much less compared with those of the conventional ANN.

摘要

基于多元线性回归(MLR)、人工神经网络(ANN)和自训练人工神经网络(STANN)技术开展了一项定量构效关系研究,用于预测13种不同类别的有机化合物的气相色谱相对保留时间。所选MLR模型中出现的五个描述符为分子密度、维纳数、沸点、极化率和极化率平方。使用MLR模型中出现的五个描述符作为输入,生成了一个5-6-1的ANN和一个5-4-1的STANN。标准误差和相关系数的比较表明,ANN和STANN优于MLR模型。这是因为分子的保留行为呈现非线性特征。对STANN和ANN结果的检查表明,这些方法之间几乎没有差异。然而,与传统的ANN相比,STANN的优化速度要快得多,并且该技术的可调参数数量要少得多。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验