Varnik F, Baschnagel J, Binder K
Institut für Physik, Johannes-Gutenberg Universität, D-55099 Mainz, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Feb;65(2 Pt 1):021507. doi: 10.1103/PhysRevE.65.021507. Epub 2002 Jan 23.
We present results of molecular-dynamics simulations for a nonentangled polymer melt confined between two completely smooth and repulsive walls, interacting with inner particles via the potential U(wall)=(sigma/z)(9), where z=/z(particle)-z(wall) and sigma is (roughly) the monomer diameter. The influence of this confinement on the dynamic behavior of the melt is studied for various film thicknesses (wall-to-wall separations) D, ranging from about 3 to about 14 times the bulk radius of gyration. A comparison of the mean-square displacements in the film and in the bulk shows an acceleration of the dynamics due to the presence of the walls. This leads to a reduction of the critical temperature T(c) of the mode coupling theory with decreasing film thickness. Analyzing the same data by the Vogel-Fulcher-Tammann (VFT) equation, we also estimate the VFT temperature T0(D). The ratio T0(D)/T(bulk)(0) decreases for smaller D similarly to T(c)(D)/T(bulk)(c). These results are in qualitative agreement with that of the glass transition temperature observed in some experiments on supported polymer films.
我们展示了分子动力学模拟的结果,该模拟针对的是一种非缠结聚合物熔体,它被限制在两个完全光滑且相互排斥的壁之间,并通过势U(壁)=(σ/z)⁹与内部粒子相互作用,其中z = /z(粒子)-z(壁),且σ大致为单体直径。对于各种膜厚度(壁到壁间距)D,研究了这种限制对熔体动力学行为的影响,D的范围约为本体回转半径的3到14倍。薄膜和本体中均方位移的比较表明,由于壁的存在,动力学加速。这导致随着薄膜厚度减小,模式耦合理论的临界温度T(c)降低。通过Vogel-Fulcher-Tammann(VFT)方程分析相同数据,我们还估计了VFT温度T0(D)。对于较小的D,T0(D)/T(本体)(0)的比值与T(c)(D)/T(本体)(c)类似地降低。这些结果与一些关于支撑聚合物薄膜的实验中观察到的玻璃化转变温度的结果在定性上一致。