Iwasaki Kenta, Kikukawa Shingo, Kawamura Shunsuke, Kouzuma Yoshiaki, Tanaka Isao, Kimura Makoto
Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan.
Biosci Biotechnol Biochem. 2002 Jan;66(1):103-9. doi: 10.1271/bbb.66.103.
Ribosomal protein L5, a 5S rRNA binding protein in the large subunit, is composed of a five-stranded antiparallel beta-sheet and four alpha-helices, and folds in a way that is topologically similar to the ribonucleprotein (RNP) domain [Nakashima et al., RNA 7, 692-701, 20011. The crystal structure of ribosomal protein L5 (BstL5) from Bacillus stearothermophilus suggests that a concave surface formed by an anti-parallel beta-sheet and long loop structures are strongly involved in 5S rRNA binding. To identify amino acid residues responsible for 5S rRNA binding, we made use of Ala-scanning mutagenesis of evolutionarily conserved amino acids occurred at beta-strands and loop structures in BstL5. The mutation of Lys33 at the beta 1-strand caused a significant reduction in 5S rRNA binding. In addition, the Arg92, Phe122, and Glu134 mutations on the beta2-strand, the alpha3-beta4 loop, and the beta4-beta5 loop, respectively, resulted in a moderate decrease in the 5S rRNA binding affinity. In contrast, mutation of the conserved residue Pro65 at the beta2-strand had little effect on the 5S rRNA binding activity. These results, taken together with previous results, identified Lys33, Asn37, Gln63, and Thr90 on the beta-sheet structure, and Phe77 at the beta2-beta3 loop as critical residues for the 5S rRNA binding. The contribution of these amino acids to 5S rRNA binding was further quantitatively evaluated by surface plasmon resonance (SPR) analysis by the use of BIAcore. The results showed that the amino acids on the beta-sheet structure are required to decrease the dissociation rate constant for the BstL5-5S rRNA complex, while those on the loops are to increase the association rate constant for the BstL5-5S rRNA interaction.
核糖体蛋白L5是大亚基中的一种5S rRNA结合蛋白,由一个五链反平行β-折叠和四个α-螺旋组成,其折叠方式在拓扑结构上与核糖核蛋白(RNP)结构域相似[中岛等人,《RNA》7,692 - 701,2001年]。嗜热栖热放线菌核糖体蛋白L5(BstL5)的晶体结构表明,由反平行β-折叠和长环结构形成的凹面强烈参与5S rRNA的结合。为了鉴定负责5S rRNA结合的氨基酸残基,我们对BstL5中β-链和环结构上进化保守的氨基酸进行了丙氨酸扫描诱变。β1-链上的赖氨酸33突变导致5S rRNA结合显著减少。此外,β2-链、α3-β4环和β4-β5环上的精氨酸92、苯丙氨酸122和谷氨酸134突变分别导致5S rRNA结合亲和力适度下降。相比之下,β2-链上保守残基脯氨酸65的突变对5S rRNA结合活性影响很小。这些结果与先前的结果一起,确定了β-折叠结构上的赖氨酸33、天冬酰胺37、谷氨酰胺63和苏氨酸90,以及β2-β3环上的苯丙氨酸77是5S rRNA结合的关键残基。通过使用BIAcore的表面等离子体共振(SPR)分析进一步定量评估了这些氨基酸对5S rRNA结合的贡献。结果表明,β-折叠结构上的氨基酸是降低BstL5 - 5S rRNA复合物解离速率常数所必需的,而环上的氨基酸则是增加BstL5 - 5S rRNA相互作用的结合速率常数所必需的。