Fischer Gerald, Tilg Bernhard, Modre Robert, Hanser Friedrich, Messnarz Bemd, Wach Paul
University for Health Informatics and Technology Tyrol, and Department of Cardiology, University Hospital Innsbruck, Austria.
IEEE Trans Biomed Eng. 2002 Mar;49(3):217-24. doi: 10.1109/10.983455.
In clinical electrocardiography, the zero-potential is commonly defined by the Wilson central terminal. In the electrocardiographic forward and inverse problem, the zero-potential is often defined in a different way, e.g., by the sum of all node potentials yielding zero. This study presents relatively simple to implement techniques, which enable the incorporation of the Wilson Terminal in the boundary element method (BEM) and finite element method (FEM). For the BEM, good results are obtained when properly adopting matrix deflation for modeling the Wilson terminal. Applying other zero-potential-definitions, the obtained solutions contained a remarkable offset with respect to the reference defined by the Wilson terminal. In the inverse problem (nonlinear dipole fit), errors introduced by an erroneous zero-potential-definition can lead to displacements of more than 5 mm in the computed dipole location. For the FEM, a method similar to matrix deflation is proposed in order to properly consider the Wilson central terminal. The matrix obtained from this manipulation is symmetric, sparse and positive definite enabling the application of standard FEM-solvers.
在临床心电图中,零电位通常由威尔逊中心端定义。在心电图正问题和逆问题中,零电位的定义方式往往不同,例如,由所有节点电位之和为零来定义。本研究提出了相对易于实现的技术,可将威尔逊端纳入边界元法(BEM)和有限元法(FEM)。对于边界元法,在对威尔逊端进行建模时正确采用矩阵收缩可获得良好结果。采用其他零电位定义时,所得解相对于由威尔逊端定义的参考值存在显著偏移。在逆问题(非线性偶极子拟合)中,错误的零电位定义所引入的误差可能导致计算出的偶极子位置偏移超过5毫米。对于有限元法,提出了一种类似于矩阵收缩的方法,以便正确考虑威尔逊中心端。通过这种操作得到的矩阵是对称、稀疏且正定的,能够应用标准的有限元法求解器。