Köhne C H, Cunningham D, Di Costanzo F, Glimelius B, Blijham G, Aranda E, Scheithauer W, Rougier P, Palmer M, Wils J, Baron B, Pignatti F, Schöffski P, Micheel S, Hecker H
Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU-Dresden, Germany.
Ann Oncol. 2002 Feb;13(2):308-17. doi: 10.1093/annonc/mdf034.
Patients with metastatic colorectal cancer are usually offered systemic chemotherapy as palliative treatment. A multivariate analysis was performed in order to identify predictors and their constellation that allow a valid prediction of the outcome in patients treated with 5-fluorouracil (5-FU)-based therapy.
A total of 3825 patients treated with 5-FU within 19 prospective randomised and three phase II trials were separated into learning (n = 2549) and validation (n = 1276) samples. Data were analysed by tree analysis using the recursive partition and amalgamation method (RECPAM). A predictor could only enter the RECPAM analysis if the number of patients with missing values was < 33.3% within a node, and the minimal node size was set to 50 patients. Twenty-three potential predictors were grouped into subsets of laboratory variables (11 parameters), tumour-related variables (seven parameters) and clinical variables (five parameters). In the first step, tree analysis was performed separately for each predictor subset. The selected prognostic parameters of the resulting partial models (the 'winners') were entered into the general model. The classification rule from the data of the learning set was applied to the independent validation set.
Winners of the subgroup analysis for laboratory variables were: platelets > or = 400 x 10(9)/l, alkaline phosphatase > or = 300 U/l, white blood cell (WBC) count > or = 10 x 10(9)/l and haemoglobin < 11 x 10(9)/l, and all predicted a worse outcome. Negative predictors within the subgroup of tumour parameters were: number of tumour sites more than one or more than two, presence of liver metastases or peritoneal carcinomatosis, which predicted a worse outcome. Furthermore, presence of lung metastases, a primary rectal cancer and presence of lymph node metastases all predicted a better outcome in the multivariate setting. Among the clinical parameters only performance status of ECOG 0 or 1 predicted better outcome. In the final regression tree, three risk groups could be identified: low risk group (n = 1111) with a median survival of 15 months for patients with ECOG 0/1 and only one tumour site; intermediate risk group (n = 904) with a median survival of 10.7 months for patients with ECOG 0/1 and more than one tumour site and alkaline phosphatase < 300 U/l or patients with ECOG > 1, WBC count < 10 x 10(9)/l and only one tumour site; high risk group (n = 534) with a median survival of 6.1 months for patients with ECOG 0/1 and more than one tumour site and alkaline phosphatase of > or = 300 U/l or patients with ECOG > 1 and more than one tumour site or WBC count > 10 x 10(9)/l. The median survival times for the good, intermediate and high risk groups in the validation sample were 14.7, 10.5 and 6.4 months, respectively.
Patients can be divided into at least three risk groups depending on the four baseline clinical parameters: performance status, WBC count, alkaline phosphatase and number of metastatic sites. Any molecular or biological marker should be validated against these clinical parameters and decisions for more or less intensive treatments may be studied separately in these three risk groups. Also, clinical trials should be stratified according to the three risk groups.
转移性结直肠癌患者通常接受全身化疗作为姑息性治疗。进行多变量分析以确定预测因素及其组合,从而能够对接受基于5-氟尿嘧啶(5-FU)治疗的患者的预后进行有效预测。
在19项前瞻性随机试验和3项II期试验中接受5-FU治疗的3825例患者被分为训练样本(n = 2549)和验证样本(n = 1276)。使用递归划分和合并方法(RECPAM)通过树分析对数据进行分析。只有当一个节点内缺失值患者数量<33.3%且最小节点大小设定为50例患者时,预测因素才能进入RECPAM分析。23个潜在预测因素被分为实验室变量子集(11个参数)、肿瘤相关变量子集(7个参数)和临床变量子集(5个参数)。第一步,对每个预测因素子集分别进行树分析。将所得部分模型(“获胜者”)中选定的预后参数纳入总体模型。将来自训练集数据的分类规则应用于独立的验证集。
实验室变量亚组分析的“获胜者”为:血小板≥400×10⁹/L、碱性磷酸酶≥300 U/L、白细胞(WBC)计数≥10×10⁹/L和血红蛋白<11×10⁹/L,所有这些均预测预后较差。肿瘤参数亚组中的阴性预测因素为:肿瘤部位数量超过1个或超过2个、存在肝转移或腹膜癌,这些预测预后较差。此外,在多变量分析中,存在肺转移、原发性直肠癌和存在淋巴结转移均预测预后较好。在临床参数中,仅美国东部肿瘤协作组(ECOG)0或1级的体能状态预测预后较好。在最终的回归树中,可以识别出三个风险组:低风险组(n = 1111),ECOG 0/1且仅有一个肿瘤部位的患者中位生存期为15个月;中风险组(n = 904),ECOG 0/1且肿瘤部位超过一个且碱性磷酸酶<300 U/L的患者或ECOG>1、WBC计数<10×10⁹/L且仅有一个肿瘤部位的患者中位生存期为10.7个月;高风险组(n = 534),ECOG 0/1且肿瘤部位超过一个且碱性磷酸酶≥300 U/L的患者或ECOG>1且肿瘤部位超过一个或WBC计数>10×10⁹/L的患者中位生存期为6.1个月。验证样本中低、中、高风险组的中位生存期分别为14.7、10.5和6.4个月。
根据四个基线临床参数:体能状态、WBC计数、碱性磷酸酶和转移部位数量,患者可分为至少三个风险组。任何分子或生物学标志物都应针对这些临床参数进行验证,并且对于或多或少强化治疗的决策可在这三个风险组中分别进行研究。此外,临床试验应根据这三个风险组进行分层。