Suppr超能文献

基因-疾病关联研究的两阶段设计

Two-stage designs for gene-disease association studies.

作者信息

Satagopan Jaya M, Verbel David A, Venkatraman E S, Offit Kenneth E, Begg Colin B

机构信息

Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.

出版信息

Biometrics. 2002 Mar;58(1):163-70. doi: 10.1111/j.0006-341x.2002.00163.x.

Abstract

The goal of this article is to describe a two-stage design that maximizes the power to detect gene-disease associations when the principal design constraint is the total cost, represented by the total number of gene evaluations rather than the total number of individuals. In the first stage, all genes of interest are evaluated on a subset of individuals. The most promising genes are then evaluated on additional subjects in the second stage. This will eliminate wastage of resources on genes unlikely to be associated with disease based on the results of the first stage. We consider the case where the genes are correlated and the case where the genes are independent. Using simulation results, it is shown that, as a general guideline when the genes are independent or when the correlation is small, utilizing 75% of the resources in stage 1 to screen all the markers and evaluating the most promising 10% of the markers with the remaining resources provides near-optimal power for a broad range of parametric configurations. This translates to screening all the markers on approximately one quarter of the required sample size in stage 1.

摘要

本文的目的是描述一种两阶段设计,当主要设计约束是总成本(以基因评估总数而非个体总数表示)时,这种设计能最大限度地提高检测基因与疾病关联的能力。在第一阶段,对一部分个体评估所有感兴趣的基因。然后在第二阶段对另外的受试者评估最有前景的基因。基于第一阶段的结果,这将消除在不太可能与疾病相关的基因上的资源浪费。我们考虑基因相关和基因独立的情况。通过模拟结果表明,作为一般指导原则,当基因独立或相关性较小时,在第一阶段利用75%的资源筛选所有标记,并使用剩余资源评估最有前景的10%的标记,对于广泛的参数配置可提供接近最优的能力。这意味着在第一阶段在大约四分之一的所需样本量上筛选所有标记。

相似文献

1
Two-stage designs for gene-disease association studies.
Biometrics. 2002 Mar;58(1):163-70. doi: 10.1111/j.0006-341x.2002.00163.x.
2
The CYP17A1 -34T > C polymorphism and breast cancer risk in BRCA1 and BRCA2 mutation carriers.
Breast Cancer Res Treat. 2011 Apr;126(2):521-7. doi: 10.1007/s10549-010-1123-5. Epub 2010 Aug 27.
3
Two-stage designs for gene-disease association studies with sample size constraints.
Biometrics. 2004 Sep;60(3):589-97. doi: 10.1111/j.0006-341X.2004.00207.x.
8
Genomic rearrangements in the BRCA1 and BRCA2 genes.
Hum Mutat. 2005 May;25(5):415-22. doi: 10.1002/humu.20169.

引用本文的文献

1
Genomics models in radiotherapy: From mechanistic to machine learning.
Med Phys. 2020 Jun;47(5):e203-e217. doi: 10.1002/mp.13751.
2
Machine Learning and Radiogenomics: Lessons Learned and Future Directions.
Front Oncol. 2018 Jun 21;8:228. doi: 10.3389/fonc.2018.00228. eCollection 2018.
3
Accounting for selection and correlation in the analysis of two-stage genome-wide association studies.
Biostatistics. 2016 Oct;17(4):634-49. doi: 10.1093/biostatistics/kxw012. Epub 2016 Mar 18.
4
Gene polymorphisms and oral cancer risk in tobacco habitués.
Tumour Biol. 2016 May;37(5):6169-76. doi: 10.1007/s13277-015-4448-1. Epub 2015 Nov 27.
5
Detecting gene-environment interactions in human birth defects: Study designs and statistical methods.
Birth Defects Res A Clin Mol Teratol. 2015 Aug;103(8):692-702. doi: 10.1002/bdra.23382. Epub 2015 May 23.
7
Two-phase and family-based designs for next-generation sequencing studies.
Front Genet. 2013 Dec 13;4:276. doi: 10.3389/fgene.2013.00276.
8
A modified two-stage approach for family-based genome-wide association studies.
Eur J Hum Genet. 2014 Jan;22(1):148-51. doi: 10.1038/ejhg.2013.105. Epub 2013 May 22.
9
Biomarker discovery for heterogeneous diseases.
Cancer Epidemiol Biomarkers Prev. 2013 May;22(5):747-55. doi: 10.1158/1055-9965.EPI-12-1236. Epub 2013 Mar 5.
10
False discovery rate control in two-stage designs.
BMC Bioinformatics. 2012 May 6;13:81. doi: 10.1186/1471-2105-13-81.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验