Suppr超能文献

Laser-induced shock waves enhance sterilization of infected vascular prosthetic grafts.

作者信息

Nigri G R, Tsai S, Kossodo S, Waterman P, Fungaloi P, Hooper D C, Doukas A G, LaMuraglia G M

机构信息

Division of Vascular Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.

出版信息

Lasers Surg Med. 2001;29(5):448-54. doi: 10.1002/lsm.1138.

Abstract

BACKGROUND AND OBJECTIVE

Bacteria that cause infection of vascular prosthetic grafts produce an exopolysaccharide matrix known as biofilm. Growth in biofilms protects the bacteria from leukocytes, antibodies and antimicrobial drugs. Laser-generated shock waves (SW) can disrupt biofilms and increase drug penetration. This study investigates the possibility of increasing antibiotic delivery and sterilization of vascular prosthetic graft.

STUDY DESIGN/MATERIALS AND METHODS: Strains of Staphylococcus epidermidis and S. aureus were isolated from infected prosthetic grafts obtained directly from patients. Dacron grafts were inoculated with the isolated bacteria, which were allowed to form adherent bacterial colonies. The colonized grafts underwent the following treatments: (a) antibiotic (vancomycin) alone; (b) antibiotic and SW (c) saline only; and (d) saline and SW. Six hours after treatment, the grafts were sonicated, the effluent was cultured and the colony forming units (CFU) were counted.

RESULTS

CFU recovered from control grafts colonized by S. epidermidis were comparable: saline, 3.05 x 10(8) and saline+SW 3.31 x 10(8). The number of S. epidermidis CFU diminished to 7.61 x 10(6) after antibiotic treatment but the combined antibiotic+SW treatment synergistically decreased CFU number to 1.27 x 10(4) (P<0.001). S. aureus showed a higher susceptibility to the antibiotic: 2.26 x 10(6) CFU; antibiotic +SW treatment also had an incremental effect: 8.27 x 10(4) CFU (P<0.001).

CONCLUSIONS

This study demonstrates that laser-generated shock waves have no effects alone, but can enhance the effectiveness of antibiotics against bacteria associated with prosthetic vascular graft biofilms, suggesting that this treatment may be of value as adjunctive therapy for prosthetic graft infections.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验