Thomas David D, Prochniewicz Ewa, Roopnarine Osha
Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA.
Results Probl Cell Differ. 2002;36:7-19. doi: 10.1007/978-3-540-46558-4_2.
Figure 3 summarizes the effects of actomyosin binding on the internal and global dynamics of either protein, as discussed in this chapter. These effects depend primarily on the strength of the interaction; which in turn depends on the state of the nucleotide at the myosin active site. When either no nucleotide or ADP is bound, the interaction is strong and the effect on each protein is maximal. When the nucleotide is ATP or ADP.Pi, or the equivalent nonhydrolyzable analogs, the interaction is weak and the effect on molecular dynamics of each protein is minimal. The weaker effects in weak-binding states are not simply the reflection of lower occupancy of binding sites--the molecular models in Fig. 3 illustrate the effects of the formation of the ternary complex, after correction for the free actin and myosin in the system. Thus EPR on myosin (Berger and Thomas 1991; Thomas et al. 1995) and pyrene fluorescence studies on actin (Geeves 1991) have shown that the formation of a ternary complex has a negligible effect on the internal dynamics of both [figure: see text] proteins (left side of Fig. 3, white arrows). As shown by both EPR (Baker et al. 1998; Roopnarine et al. 1998) and phosphorescence (Ramachandran and Thomas 1999), both domains of myosin are dynamically disordered in weak-binding states, and this is essentially unaffected by the formation of the ternary complex (left side of Fig. 3, indicated by disordered myosin domains). The only substantial effect of the formation of the weak interaction that has been reported is the EPR-detected (Ostap and Thomas 1991) restriction of the global dynamics of actin upon weak myosin binding (left column of Fig. 3, gray arrow). The effects of strong actomyosin formation are much more dramatic. While substantial rotational dynamics, both internal and global, exist in both myosin and actin in the presence of ADP or the absence of nucleotides, spin label EPR, pyrene fluorescence, and phosphorescence all show dramatic restrictions in these motions upon formation of the strong ternary complex (right column of Fig. 3). One implication of this is that the weak-to-strong transition is accompanied by a disorder-to-order transition in both actin and myosin, and this is itself an excellent candidate for the structural change that produces force (Thomas et al. 1995). Another clear implication is that the crystal structures obtained for isolated myosin and actin are not likely to be reliable representations of structures that exist in ternary complexes of these proteins (Rayment et al. 1993a and 1993b; Dominguez et al. 1998; Houdusse et al. 1999). This is clearly true of the strong-binding states, since the spectroscopic studies indicate consistently that substantial changes occur in both proteins upon strong complex formation. For the weak complexes, the problem is not that complex formation induces large structural changes, but that the structures themselves are dynamically disordered. This is probably why so many different structures have been obtained for myosin S1 with nucleotides bound--each crystal is selecting one of the many different substates represented by the dynamic ensemble. Finally, there is the problem that the structures of actomyosin complexes are probably influenced strongly by their mechanical coupling to muscle protein lattice (Baker at al. 2000). Thus, even if co-crystals of actin and myosin are obtained in the future, an accurate description of the structural changes involved in force generation will require further experiments using site-directed spectroscopic probes of both actin and myosin, in order to detect the structural dynamics of these ternary complexes under physiological conditions.
图3总结了本章所讨论的肌动球蛋白结合对两种蛋白质内部和整体动力学的影响。这些影响主要取决于相互作用的强度;而相互作用强度又取决于肌球蛋白活性位点上核苷酸的状态。当不结合核苷酸或结合ADP时,相互作用很强,对每种蛋白质的影响最大。当核苷酸为ATP或ADP·Pi,或等效的不可水解类似物时,相互作用较弱,对每种蛋白质分子动力学的影响最小。弱结合状态下较弱的影响并非仅仅是结合位点占有率较低的反映——图3中的分子模型说明了三元复合物形成的影响,这是在对系统中游离肌动蛋白和肌球蛋白进行校正之后得出的。因此,对肌球蛋白的电子顺磁共振研究(伯杰和托马斯,1991年;托马斯等人,1995年)以及对肌动蛋白的芘荧光研究(吉夫斯,1991年)表明,三元复合物的形成对两种蛋白质的内部动力学影响可忽略不计(图3左侧,白色箭头)。如电子顺磁共振(贝克等人,1998年;鲁普纳林等人,1998年)和磷光研究(拉马钱德兰和托马斯,1999年)所示,在弱结合状态下,肌球蛋白的两个结构域都是动态无序的,并且这基本上不受三元复合物形成的影响(图3左侧,由无序的肌球蛋白结构域表示)。已报道的弱相互作用形成的唯一显著影响是电子顺磁共振检测到的(奥斯塔普和托马斯,1991年)弱肌球蛋白结合时肌动蛋白整体动力学的受限(图3左列,灰色箭头)。强肌动球蛋白形成的影响则更为显著。虽然在存在ADP或不存在核苷酸的情况下,肌球蛋白和肌动蛋白中都存在大量的内部和整体旋转动力学,但自旋标记电子顺磁共振、芘荧光和磷光都表明,在形成强三元复合物时,这些运动受到显著限制(图3右列)。这意味着从弱到强的转变伴随着肌动蛋白和肌球蛋白从无序到有序的转变,而这本身就是产生力的结构变化的极佳候选因素(托马斯等人,1995年)。另一个明显的含义是,分离得到的肌球蛋白和肌动蛋白的晶体结构不太可能可靠地代表这些蛋白质三元复合物中存在的结构(雷门特等人,1993a和1993b;多明格斯等人,1998年;胡迪塞等人,1999年)。对于强结合状态来说显然如此,因为光谱研究一致表明,在形成强复合物时,两种蛋白质都会发生显著变化。对于弱复合物,问题不在于复合物形成会诱导大的结构变化,而是结构本身是动态无序的。这可能就是为什么结合核苷酸的肌球蛋白S1会得到如此多不同结构的原因——每个晶体都选择了由动态集合所代表的许多不同亚状态中的一种。最后,存在这样一个问题,即肌动球蛋白复合物的结构可能会受到它们与肌肉蛋白质晶格的机械耦合的强烈影响(贝克等人,2000年)。因此,即使未来获得了肌动蛋白和肌球蛋白的共晶体,要准确描述力产生过程中涉及的结构变化,仍需要使用针对肌动蛋白和肌球蛋白的定点光谱探针进行进一步实验,以便在生理条件下检测这些三元复合物的结构动力学。