Suppr超能文献

氧化DNA损伤的修复:机制与功能

Repair of oxidative DNA damage: mechanisms and functions.

作者信息

Lu A L, Li X, Gu Y, Wright P M, Chang D Y

机构信息

Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore 21201, USA.

出版信息

Cell Biochem Biophys. 2001;35(2):141-70. doi: 10.1385/CBB:35:2:141.

Abstract

Cellular genomes suffer extensive damage from exogenous agents and reactive oxygen species formed during normal metabolism. The MutT homologs (MutT/MTH) remove oxidized nucleotide precursors so that they cannot be incorporated into DNA during replication. Among many repair pathways, the base excision repair (BER) pathway is the most important cellular protection mechanism responding to oxidative DNA damage. The 8-oxoG glycosylases (Fpg or MutM/OGG) and the MutY homologs (MutY/MYH) glycosylases along with MutT/MTH protect cells from the mutagenic effects of 8-oxoG, the most stable and deleterious product known caused by oxidative damage to DNA. The key enzymes in the BER process are DNA glycosylases, which remove different damaged bases by cleavage of the N-glycosylic bonds between the bases and the deoxyribose moieties of the nucleotide residues. Biochemical and structural studies have demonstrated the substrate recognition and reaction mechanism of BER enzymes. Cocrystal structures of several glycosylases show that the substrate base flips out of the sharply bent DNA helix and the minor groove is widened to be accessed by the glycosylases. To complete the repair after glycosylase action, the apurinic/apyrimidinic (AP) site is further processed by an incision step, DNA synthesis, an excision step, and DNA ligation through two alternative pathways. The short-patch BER (1-nucleotide patch size) and long-patch BER (2-6-nucleotide patch size) pathways need AP endonuclease to generate a 3' hydroxyl group but require different sets of enzymes for DNA synthesis and ligation. Protein-protein interactions have been reported among the enzymes involved in BER. It is possible that the successive players in the repair pathway are assembled in a complex to perform concerted actions. The BER pathways are proposed to protect cells and organisms from mutagenesis and carcinogenesis.

摘要

细胞基因组会受到外源性因素以及正常代谢过程中形成的活性氧的广泛损伤。MutT同源物(MutT/MTH)可去除氧化的核苷酸前体,使其在复制过程中无法掺入DNA。在众多修复途径中,碱基切除修复(BER)途径是应对氧化性DNA损伤的最重要的细胞保护机制。8-氧代鸟嘌呤糖基化酶(Fpg或MutM/OGG)以及MutY同源物(MutY/MYH)糖基化酶与MutT/MTH一起保护细胞免受8-氧代鸟嘌呤的诱变作用,8-氧代鸟嘌呤是已知由DNA氧化损伤导致的最稳定且有害的产物。BER过程中的关键酶是DNA糖基化酶,其通过切割碱基与核苷酸残基的脱氧核糖部分之间的N-糖苷键来去除不同的受损碱基。生化和结构研究已经阐明了BER酶的底物识别和反应机制。几种糖基化酶的共晶体结构表明,底物碱基从急剧弯曲的DNA螺旋中翻转出来,小沟变宽以便糖基化酶能够接近。为了在糖基化酶作用后完成修复,无嘌呤/无嘧啶(AP)位点通过切口步骤、DNA合成、切除步骤以及通过两条替代途径进行DNA连接进一步处理。短补丁BER(1个核苷酸补丁大小)和长补丁BER(2 - 6个核苷酸补丁大小)途径需要AP内切核酸酶来产生3'羟基,但在DNA合成和连接方面需要不同的酶组。据报道,参与BER的酶之间存在蛋白质 - 蛋白质相互作用。修复途径中的连续参与者有可能组装成一个复合物来协同发挥作用。BER途径被认为可以保护细胞和生物体免受诱变和致癌作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验