Dragon Stefanie, Offenhäuser Nina, Baumann Rosemarie
Physiologisches Institut, Universität Regensburg, 93053 Regensburg, Germany.
Am J Physiol Regul Integr Comp Physiol. 2002 Apr;282(4):R1219-26. doi: 10.1152/ajpregu.00507.2001.
During avian embryonic development, terminal erythroid differentiation occurs in the circulation. Some of the key events, such as the induction of erythroid 2,3-bisphosphoglycerate (2,3-BPG), carbonic anhydrase (CAII), and pyrimidine 5'-nucleotidase (P5N) synthesis are oxygen dependent (Baumann R, Haller EA, Schöning U, and Weber M, Dev Biol 116: 548-551, 1986; Dragon S and Baumann R, Am J Physiol Regulatory Integrative Comp Physiol 280: R870-R878, 2001; Dragon S, Carey C, Martin K, and Baumann R, J Exp Biol 202: 2787-2795, 1999; Dragon S, Glombitza S, Götz R, and Baumann R, Am J Physiol Regulatory Integrative Comp Physiol 271: R982-R989, 1996; Dragon S, Hille R, Götz R, and Baumann R, Blood 91: 3052-3058, 1998; Million D, Zillner P, and Baumann R, Am J Physiol Regulatory Integrative Comp Physiol 261: R1188-R1196, 1991) in an indirect way: hypoxia stimulates the release of norepinephrine (NE)/adenosine into the circulation (Dragon et al., J Exp Biol 202: 2787-2795, 1999; Dragon et al., Am J Physiol Regulatory Integrative Comp Physiol 271: R982-R989, 1996). This leads via erythroid beta-adrenergic/adenosine A(2) receptor activation to a cAMP signal inducing several proteins in a transcription-dependent manner (Dragon et al., Am J Physiol Regulatory Integrative Comp Physiol 271: R982-R989, 1996; Dragon et al., Blood 91: 3052-3058, 1998; Glombitza S, Dragon S, Berghammer M, Pannermayr M, and Baumann R, Am J Physiol Regulatory Integrative Comp Physiol 271: R973-R981, 1996). To understand how the cAMP-dependent processes are initiated, we screened an erythroid cDNA library for cAMP-regulated genes. We detected three genes that were strongly upregulated (>5-fold) by cAMP in definitive and primitive red blood cells. They are homologous to the mammalian Tob, Ifr1, and Fos proteins. In addition, the genes are induced in the intact embryo during short-term hypoxia. Because the genes are regulators of proliferation and differentiation in other cell types, we suggest that cAMP might promote general differentiating processes in erythroid cells, thereby allowing adaptive modulation of the latest steps of erythroid differentiation during developmental hypoxia.
在鸟类胚胎发育过程中,红细胞的终末分化发生在循环系统中。一些关键事件,如诱导红细胞2,3-二磷酸甘油酸(2,3-BPG)、碳酸酐酶(CAII)和嘧啶5'-核苷酸酶(P5N)的合成,是以一种间接的方式依赖氧气的(Baumann R、Haller EA、Schöning U和Weber M,《发育生物学》116: 548 - 551,1986;Dragon S和Baumann R,《美国生理学杂志:调节、整合与比较生理学》280: R870 - R878,2001;Dragon S、Carey C、Martin K和Baumann R,《实验生物学杂志》202: 2787 - 2795,1999;Dragon S、Glombitza S、Götz R和Baumann R,《美国生理学杂志:调节、整合与比较生理学》271: R982 - R989,1996;Dragon S、Hille R、Götz R和Baumann R,《血液》91: 3052 - 3058,1998;Million D、Zillner P和Baumann R,《美国生理学杂志:调节、整合与比较生理学》261: R1188 - R1196,1991):缺氧刺激去甲肾上腺素(NE)/腺苷释放到循环系统中(Dragon等人,《实验生物学杂志》202: 2787 - 2795,1999;Dragon等人,《美国生理学杂志:调节、整合与比较生理学》271: R982 - R989,1996)。这通过红细胞β-肾上腺素能/腺苷A(2)受体激活导致cAMP信号,以转录依赖的方式诱导几种蛋白质(Dragon等人,《美国生理学杂志:调节、整合与比较生理学》271: R982 - R989,1996;Dragon等人,《血液》91: 3052 - 3058,1998;Glombitza S、Dragon S、Berghammer M、Pannermayr M和Baumann R,《美国生理学杂志:调节、整合与比较生理学》271: R973 - R981,1996)。为了了解cAMP依赖性过程是如何启动的,我们筛选了一个红细胞cDNA文库以寻找cAMP调节的基因。我们检测到三个在定型和原始红细胞中被cAMP强烈上调(>5倍)的基因。它们与哺乳动物的Tob、Ifr1和Fos蛋白同源。此外,这些基因在完整胚胎的短期缺氧过程中也被诱导。由于这些基因是其他细胞类型中增殖和分化的调节因子,我们认为cAMP可能促进红细胞的一般分化过程,从而在发育性缺氧期间允许对红细胞分化的最后步骤进行适应性调节。