DiPolo Reinaldo, Beaugé Luis
Laboratorio de Permeabilidad Iónica, Centro de Biofísica y Bioquímica, IVIC, Apartado 21827, Caracas 1020-A, Venezuela.
J Physiol. 2002 Mar 15;539(Pt 3):791-803. doi: 10.1113/jphysiol.2001.013377.
Intracellular Na(+) and H(+) inhibit Na(+)-Ca(2+) exchange. ATP regulates exchange activity by altering kinetic parameters for Ca(2+)(i), Na(+)(i) and Na(+)(o). The role of the Ca(2+)(i)regulatory site on Na(+)(i)-H(+)(i)-ATP interactions was explored by measuring the Na(+)(o)-dependent (45)Ca(2+) efflux (Na(+)(o)-Ca(2+)(i) exchange) and Ca(2+)(i)-dependent (22)Na(+) efflux (Na(+)(o)-Na(+)(i) exchange) in intracellular-dialysed squid axons. Our results show that: (1) without ATP, inhibition by Na(+)(i) is strongly dependent on H(+)(i). Lowering the pH(i) by 0.4 units from its physiological value of 7.3 causes 80 % inhibition of Na(+)(o)-Ca(2+)(i) exchange; (2) in the presence of MgATP, H(+)(i) and Na(+)(i) inhibition is markedly diminished; and (3) experiments on Na(+)(o)-Na(+)(i) exchange indicate that the drastic changes in the Na(+)(i)-H(+)(i)-ATP interactions take place at the Ca(2+)(i) regulatory site. The increase in Ca(2+)(i) affinity induced by ATP at acid pH (6.9) can be mimicked by a rise in pH(i) from 6.9 to 7.3 in the absence of the nucleotide. We conclude that ATP modulation of the Na(+)-Ca(2+) exchange occurs by protection from intracellular proton and sodium inhibition. These findings are predicted by a model where: (i) the binding of Ca(2+) to the regulatory site is essential for translocation but not for the binding of Na(+)(i) or Ca(2+)(i) to the transporting site; (ii) H(+)(i) competes with Ca(2+)(i) for the same form of the exchanger without an effect on the Ca(2+)(i) transporting site; (iii) protonation of the carrier increases the apparent affinity and changes the cooperativity for Na(+)(i) binding; and (iv) ATP prevents both H(+)(i) and Na(+)(i)-effects. The relief of H(+) and Na(+) inhibition induced by ATP could be important in cardiac ischaemia, in which a combination of acidosis and rise in Na(+) occurs.
细胞内的钠离子(Na⁺)和氢离子(H⁺)会抑制钠钙交换。三磷酸腺苷(ATP)通过改变钙离子(Ca²⁺)内流、钠离子(Na⁺)内流和钠离子(Na⁺)外流的动力学参数来调节交换活性。通过测量细胞内透析枪乌贼轴突中钠离子(Na⁺)外流依赖性的⁴⁵Ca²⁺外流(Na⁺外流 - Ca²⁺内流交换)和钙离子(Ca²⁺)内流依赖性的²²Na⁺外流(Na⁺外流 - Na⁺内流交换),探讨了钙离子(Ca²⁺)内流调节位点在钠离子(Na⁺)内流 - 氢离子(H⁺)内流 - ATP相互作用中的作用。我们的结果表明:(1)在没有ATP的情况下,钠离子(Na⁺)内流的抑制作用强烈依赖于氢离子(H⁺)内流。将细胞内pH值(pH(i))从其生理值7.3降低0.4个单位会导致80%的Na⁺外流 - Ca²⁺内流交换受到抑制;(2)在存在镁ATP(MgATP)的情况下,氢离子(H⁺)内流和钠离子(Na⁺)内流的抑制作用明显减弱;(3)关于Na⁺外流 - Na⁺内流交换的实验表明,钠离子(Na⁺)内流 - 氢离子(H⁺)内流 - ATP相互作用的剧烈变化发生在钙离子(Ca²⁺)内流调节位点。在酸性pH值(6.9)时,ATP诱导的钙离子(Ca²⁺)内流亲和力增加可以在没有核苷酸的情况下通过将pH(i)从6.9升高到7.3来模拟。我们得出结论,ATP对钠钙交换的调节是通过防止细胞内质子和钠离子的抑制来实现的。这些发现可以由一个模型预测:(i)钙离子(Ca²⁺)与调节位点的结合对于转运是必不可少的,但对于钠离子(Na⁺)内流或钙离子(Ca²⁺)内流与转运位点的结合不是必需的;(ii)氢离子(H⁺)内流与钙离子(Ca²⁺)内流竞争同一种形式的交换体,而对钙离子(Ca²⁺)内流转运位点没有影响;(iii)载体的质子化增加了对钠离子(Na⁺)内流结合的表观亲和力并改变了协同性;(iv)ATP可防止氢离子(H⁺)内流和钠离子(Na⁺)内流的影响。ATP诱导的氢离子(H⁺)和钠离子(Na⁺)抑制的缓解在心脏缺血中可能很重要,因为在心脏缺血时会发生酸中毒和细胞内钠离子(Na⁺)升高的联合情况。