Halvorsen T, Levine F
UCSD Cancer Center, La Jolla, CA 92093-0912, USA.
Curr Mol Med. 2001 May;1(2):273-86. doi: 10.2174/1566524013363951.
Diabetes mellitus affects millions of people in the United States and worldwide. It has become clear over the past decade that the chronic complications of diabetes result from lack of proper blood glucose concentration regulation, and particularly the toxic effects of chronic hyperglycemia on organs and tissues. Pancreas transplants can cure insulin-dependent diabetes mellitus (IDDM). Furthermore, recent advances in pancreatic islet isolation and immunosuppressive regimens have resulted in dramatic improvements in the survival and function of islet allografts. Therefore, islet replacement strategies are becoming increasingly attractive options for patients at risk for severe diabetic complications. A major limitation of these approaches is the small number of organs available for transplantation or islet isolation. Thus, an important next step in developing curative treatments for type I diabetes will be the generation of a replenishable source of glucose-responsive, insulin-secreting cells that can be used for beta cell replacement. This review focuses on approaches to developing robust and widely applicable beta-cell replacement strategies with an emphasis on manipulating beta-cell growth and differentiation by genetic engineering.
在美国及全球,数以百万计的人受糖尿病影响。在过去十年中已明确,糖尿病的慢性并发症是由于缺乏适当的血糖浓度调节,尤其是慢性高血糖对器官和组织的毒性作用所致。胰腺移植可治愈胰岛素依赖型糖尿病(IDDM)。此外,胰腺胰岛分离和免疫抑制方案的最新进展已使胰岛同种异体移植的存活率和功能得到显著改善。因此,对于有严重糖尿病并发症风险的患者而言,胰岛替代策略正成为越来越有吸引力的选择。这些方法的一个主要局限是可用于移植或胰岛分离的器官数量稀少。因此,开发I型糖尿病治愈性疗法的下一个重要步骤将是生成可补充的葡萄糖反应性、胰岛素分泌细胞来源,用于β细胞替代。本综述着重探讨开发强大且广泛适用的β细胞替代策略的方法,重点是通过基因工程操纵β细胞的生长和分化。