Suppr超能文献

血清胸苷激酶和可溶性白细胞介素-2受体可预测恶性淋巴瘤的复发。

Serum thymidine kinase and soluble interleukin-2 receptor predict recurrence of malignant lymphoma.

作者信息

Wakao D, Murohashi I, Tominaga K, Yoshida K, Kishimoto K, Yagasaki F, Itoh Y, Itoh K, Sakata T, Kawai N, Kayano H, Suzuki T, Matsuda A, Hirashima K, Bessho M

机构信息

First Department of Internal Medicine, Saitama Medical School, Saitama 350-0495, Japan.

出版信息

Ann Hematol. 2002 Mar;81(3):140-6. doi: 10.1007/s00277-001-0421-8. Epub 2002 Feb 9.

Abstract

Before and after therapy, serum thymidine kinase (TK) and soluble interleukin-2 receptor (sIL-2R) were serially determined in 28 patients with malignant lymphoma (ML). In 15 patients achieving and maintaining complete remission (CR) for more than 2 years, serum TK and sIL-2R were unchanged or decreased gradually. In contrast, logarithmic linear increases of TK and sIL-2R were observed in 13 relapsed patients. The increments of the serum markers occurred more than 10 months before the relapse. A significant positive correlation between the slope of the line for TK and that for sIL-2R was noted. The doubling time for TK estimated from the slope also showed a positive correlation with that for sIL-2R. Taken together, serum TK and sIL-2R were shown to be quite sensitive and interrelated serum markers for the recurrence of ML. Slopes of logarithmic linear increase, which are proper and specific for the individual patients, are inversely correlated with the doubling time and reflect proliferation of ML. We conclude that serum TK and sIL-2R are better predictors of relapse than LDH and the international prognostic index (IPI).

摘要

对28例恶性淋巴瘤(ML)患者在治疗前后连续检测血清胸苷激酶(TK)和可溶性白细胞介素-2受体(sIL-2R)。15例达到并维持完全缓解(CR)超过2年的患者,血清TK和sIL-2R无变化或逐渐下降。相比之下,13例复发患者的TK和sIL-2R呈对数线性增加。血清标志物的升高发生在复发前10多个月。观察到TK和sIL-2R的直线斜率之间存在显著正相关。根据斜率估算的TK倍增时间与sIL-2R的倍增时间也呈正相关。综上所述,血清TK和sIL-2R是ML复发相当敏感且相互关联的血清标志物。对数线性增加的斜率对个体患者是合适且特异的,与倍增时间呈负相关,反映了ML的增殖。我们得出结论,血清TK和sIL-2R比乳酸脱氢酶(LDH)和国际预后指数(IPI)更能预测复发。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验