Suppr超能文献

分泌催产素的神经元:成年下丘脑形态学神经元和神经胶质可塑性的生理模型。

Oxytocin-secreting neurons: A physiological model of morphological neuronal and glial plasticity in the adult hypothalamus.

作者信息

Theodosis Dionysia T

机构信息

INSERM U378 Neuroendocrinologie Morphofonctionelle, Institut François Magendie, Bordeaux, France.

出版信息

Front Neuroendocrinol. 2002 Jan;23(1):101-35. doi: 10.1006/frne.2001.0226.

Abstract

Oxytocin-secreting neurons of the hypothalamoneurohypophysial system undergo reversible morphological changes whenever they are strongly stimulated. In the hypothalamus, such structural plasticity is represented by modifications in the size and shape of their somata and dendrites, in the extent to which their surfaces are covered by glia, and in the density of their synapses. In the neurohypophysis, there is a parallel reduction in glial (pituicyte) coverage of their axons together, with retraction of pituicyte processes from the perivascular basal lamina and an increase in the number and size of their terminals. These changes occur rapidly, within a few hours. On the other hand, the system returns to its prestimulated condition on arrest of stimulation at a rate that depends on the length of time it has remained activated. Such neuronal-glial changes have several functional consequences. In the hypothalamic nuclei, reduction in astrocytic coverage of oxytocinergic neurons and their synapses modifies extracellular ionic homeostasis and glutamate clearance and, therefore, their overall excitability. Since it results in extensive dendritic bundling, it may also lead to ephaptic interactions and may facilitate dendritic electrotonic coupling. A most important indirect effect may be to permit synaptic remodeling that occurs concomitantly and that results in significant increases in the number of excitatory and inhibitory synapses driving their activity. In the stimulated neurohypophysis, glial retraction results in increased levels of extracellular K+ which can enhance neurohormone release while an enlarged neurovascular contact zone may facilitate diffusion of neurohormone into the circulation. Ongoing work aims to unravel the cell mechanisms and factors underlying such plasticity and has revealed that neurons and glia of the hypothalamoneurohypophysial system continue to express juvenile molecular features associated with similar neuronglial interactions and synaptic events during development and regeneration. They include strong expression of cell surface adhesion molecules like F3/contactin and polysialylated neural cell adhesion molecule, extracellular matrix glycoproteins like tenascin C, and cytoskeletal proteins like vimentin and microtubule-associated protein 1D. Some of these molecules reach the cell surface constitutively while others follow the activity-dependent regulated pathway. We consider many of these molecular features permissive, allowing oxytocin neurons and their glia to undergo morphological remodeling throughout life, provided the proper stimulus intervenes. In the hypothalamic nuclei, one such stimulus is centrally released oxytocin; in the neurohypophysis, an adrenergic, cAMP-mediated mechanism appears responsible.

摘要

下丘脑 - 神经垂体系统中分泌催产素的神经元在受到强烈刺激时会发生可逆的形态变化。在下丘脑中,这种结构可塑性表现为其胞体和树突的大小和形状的改变、其表面被神经胶质覆盖的程度以及其突触密度的改变。在神经垂体中,其轴突的神经胶质(垂体细胞)覆盖同时平行减少,垂体细胞突起从血管周围基膜回缩,其终末的数量和大小增加。这些变化在数小时内迅速发生。另一方面,当刺激停止时,该系统以取决于其保持激活时间长短的速率恢复到刺激前的状态。这种神经元 - 神经胶质变化有几个功能后果。在下丘脑核中,催产素能神经元及其突触的星形胶质细胞覆盖减少会改变细胞外离子稳态和谷氨酸清除,因此改变它们的整体兴奋性。由于它导致广泛的树突束集,它也可能导致电场相互作用并可能促进树突电紧张耦合。一个最重要的间接效应可能是允许伴随发生的突触重塑,这导致驱动其活动的兴奋性和抑制性突触数量显著增加。在受刺激的神经垂体中,神经胶质回缩导致细胞外钾离子水平升高,这可以增强神经激素释放,而扩大的神经血管接触区可能促进神经激素扩散到循环中。正在进行的工作旨在揭示这种可塑性背后的细胞机制和因素,并已发现下丘脑 - 神经垂体系统的神经元和神经胶质在发育和再生过程中继续表达与类似神经元 - 神经胶质相互作用和突触事件相关的幼年分子特征。它们包括细胞表面粘附分子如F3 /接触蛋白和多唾液酸神经细胞粘附分子的强烈表达、细胞外基质糖蛋白如腱生蛋白C以及细胞骨架蛋白如波形蛋白和微管相关蛋白1D的强烈表达。其中一些分子组成性地到达细胞表面,而其他分子则遵循活动依赖性调节途径。我们认为这些分子特征中的许多是允许性的,只要有适当的刺激介入,就允许催产素神经元及其神经胶质在整个生命过程中进行形态重塑。在下丘脑核中,一种这样的刺激是中枢释放的催产素;在神经垂体中,一种肾上腺素能、cAMP介导的机制似乎起作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验