Eladari Dominique, Leviel Françoise, Pezy Françoise, Paillard Michel, Chambrey Régine
Institut National de la Santé et de la Recherche Médicale Unité 356, Institut Fédératif de Recherche 58, Université Pierre et Marie Curie, 75270 Paris Cedex 06, France.
Am J Physiol Renal Physiol. 2002 May;282(5):F835-43. doi: 10.1152/ajprenal.00188.2001.
In the proximal tubule, the apical Na(+)/H(+) exchanger identified as NHE3 mediates most NaCl and NaHCO(3) absorption. The purpose of this study was to analyze the long-term regulation of NHE3 during alkalosis induced by dietary NaHCO(3) loading and changes in NaCl intake. Sprague-Dawley rats exposed to a low-NaCl, high-NaCl, or NaHCO(3) diet for 6 days were studied. Renal cortical apical membrane vesicles (AMV) were prepared from treated and normal rats. Na(+)/H(+) exchange was assayed as the initial rate of (22)Na(+) uptake in the presence of an outward H(+) gradient. (22)Na(+) uptake measured in the presence of high-dose 5-(N-ethyl-N-isopropyl) amiloride was not different among models. Changes in NaCl intake did not affect NHE3 activity, whereas NaHCO(3) loading inhibited (22)Na(+) uptake by 30%. AMV NHE3 protein abundance assessed by Western blot analysis was unaffected during changes in NaCl intake. During NaHCO(3) loading, NHE3 protein abundance was decreased by 65%. We conclude that proximal NHE3 adapts to chronic metabolic acid-base disorders but not to changes in dietary NaCl intake.