Suppr超能文献

一种用于估计二分和多分Rasch模型项目参数的特征向量方法。

An eigenvector method for estimating item parameters of the dichotomous and polytomous Rasch models.

作者信息

Garner Mary

机构信息

Kennesaw State University, Department of Mathematics, 1000 Chastain Roads, Kennesaw, GA 30144, USA.

出版信息

J Appl Meas. 2002;3(2):107-28.

Abstract

The purpose of this paper is to describe a technique for obtaining item parameters of the Rasch model, a technique in which the item parameters are extracted from the eigenvector of a matrix derived from comparisons between pairs of items. The technique can be applied to both dichotomous and polytomous data. In application to a previously published data set, it is shown that the technique provides item parameter estimates comparable to those produced by joint maximum likelihood estimation, and for the most difficult items, the technique appears to produce superior estimates. This method has several advantages. It easily accommodates missing data, and makes transparent the basis for item parameter estimation in the presence of missing data. Furthermore, the method provides a link to other methods in the social sciences and, in particular, provides the framework for application of graph theory to the analysis of assessment networks. Finally, it exploits several characteristics that are unique to the Rasch model.

摘要

本文的目的是描述一种获取拉施模型项目参数的技术,该技术从由项目对之间的比较得出的矩阵的特征向量中提取项目参数。该技术可应用于二分数据和多分类数据。在应用于先前发表的数据集时,结果表明该技术提供的项目参数估计与联合最大似然估计产生的估计相当,并且对于最难的项目,该技术似乎能产生更优的估计。此方法有几个优点。它能轻松处理缺失数据,并在存在缺失数据的情况下使项目参数估计的基础变得透明。此外,该方法为社会科学中的其他方法提供了联系,特别是为将图论应用于评估网络分析提供了框架。最后,它利用了拉施模型独有的几个特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验