Van Wüllen Christoph
Technische Universität Berlin, Sekr. C3, Strasse des 17. Juni 115, D-10623 Berlin, Germany.
J Comput Chem. 2002 Jun;23(8):779-85. doi: 10.1002/jcc.10043.
With present day exchange-correlation functionals, accurate results in nonrelativistic open shell density functional calculations can only be obtained if one uses functionals that do not only depend on the electron density but also on the spin density. We consider the common case where such functionals are applied in relativistic density functional calculations. In scalar-relativistic calculations, the spin density can be defined conventionally, but if spin-orbit coupling is taken into account, spin is no longer a good quantum number and it is not clear what the "spin density" is. In many applications, a fixed quantization axis is used to define the spin density ("collinear approach"), but one can also use the length of the local spin magnetization vector without any reference to an external axis ("noncollinear approach"). These two possibilities are compared in this work both by formal analysis and numerical experiments. It is shown that the (nonrelativistic) exchange-correlation functional should be invariant with respect to rotations in spin space, and this only holds for the noncollinear approach. Total energies of open shell species are higher in the collinear approach because less exchange energy is assigned to a given Kohn-Sham reference function. More importantly, the collinear approach breaks rotational symmetry, that is, in molecular calculations one may find different energies for different orientations of the molecule. Data for the first ionization potentials of Tl, Pb, element 113, and element 114, and for the orientation dependence of the total energy of I+2 and PbF indicate that the error introduced by the collinear approximation is approximately 0.1 eV for valence ionization potentials, but can be much larger if highly ionized open shell states are considered. Rotational invariance is broken by the same amount. This clearly indicates that the collinear approach should not be used, as the full treatment is easily implemented and does not introduce much more computational effort.
使用当今的交换关联泛函,在非相对论性开壳层密度泛函计算中,只有当使用不仅依赖于电子密度而且还依赖于自旋密度的泛函时,才能获得精确的结果。我们考虑在相对论性密度泛函计算中应用此类泛函的常见情况。在标量相对论计算中,自旋密度可以按常规定义,但如果考虑自旋轨道耦合,自旋不再是一个好的量子数,并且不清楚“自旋密度”是什么。在许多应用中,使用固定的量子化轴来定义自旋密度(“共线方法”),但也可以使用局部自旋磁化矢量的长度而无需参考任何外部轴(“非共线方法”)。在这项工作中,通过形式分析和数值实验对这两种可能性进行了比较。结果表明,(非相对论性)交换关联泛函对于自旋空间中的旋转应该是不变的,而这仅适用于非共线方法。在共线方法中,开壳层物种的总能量更高,因为分配给给定的科恩 - 沈(Kohn - Sham)参考函数的交换能更少。更重要的是,共线方法打破了旋转对称性,也就是说,在分子计算中,对于分子的不同取向可能会得到不同的能量。铊(Tl)、铅(Pb)、113号元素和114号元素的第一电离势数据,以及I₂⁺和PbF总能量的取向依赖性数据表明,对于价电子电离势,共线近似引入的误差约为0.1电子伏特,但如果考虑高度电离的开壳层态,误差可能会大得多。旋转不变性也被同样程度地打破。这清楚地表明不应使用共线方法,因为完整的处理很容易实现,并且不会引入更多的计算量。