Saue Trond, Helgaker Trygve
UMR 7551 CNRS/Université Louis Pasteur, Laboratoire de Chimie Quantique et Modélisation Moléculaire, 4 rue Blaise Pascal, F-67000 Strasbourg, France.
J Comput Chem. 2002 Jun;23(8):814-23. doi: 10.1002/jcc.10066.
A four-component relativistic implementation of Kohn-Sham theory for molecular systems is presented. The implementation is based on a nonredundant exponential parametrization of the Kohn-Sham energy, well suited to studies of molecular static and dynamic properties as well as of total electronic energies. Calculations are presented of the bond lengths and the harmonic and anharmonic vibrational frequencies of Au(2), Hg(2+)(2), HgAu(+), HgPt, and AuH. All calculations are based on the full four-component Dirac-Coulomb Hamiltonian, employing nonrelativistic local, gradient-corrected, and hybrid density functionals. The relevance of the Coulomb and Breit operators for the construction of relativistic functionals is discussed; it is argued that, at the relativistic level of density-functional theory and in the absence of a vector potential, the neglect of current functionals follows from the neglect of the Breit operator.
本文提出了一种用于分子系统的含四个分量的相对论性Kohn-Sham理论实现方法。该实现基于Kohn-Sham能量的非冗余指数参数化,非常适合研究分子的静态和动态性质以及总电子能量。文中给出了Au(2)、Hg(2+)(2)、HgAu(+)、HgPt和AuH的键长以及谐波和非谐波振动频率的计算结果。所有计算均基于完整的四分量狄拉克-库仑哈密顿量,采用非相对论性的局域、梯度校正和混合密度泛函。讨论了库仑算符和Breit算符对于构建相对论性泛函的相关性;文中认为,在密度泛函理论的相对论水平且不存在矢量势的情况下,由于忽略了Breit算符,因而忽略了流泛函。