Suppr超能文献

Large scale sequencing by hybridization.

作者信息

Shamir Ron, Tsur Dekel

机构信息

School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel.

出版信息

J Comput Biol. 2002;9(2):413-28. doi: 10.1089/10665270252935548.

Abstract

Sequencing by hybridization is a method for reconstructing a DNA sequence based on its k-mer content. This content, called the spectrum of the sequence, can be obtained from hybridization with a universal DNA chip. However, even with a sequencing chip containing all 4(9) 9-mers and assuming no hybridization errors, only about 400-bases-long sequences can be reconstructed unambiguously. Drmanac et al. (1989) suggested sequencing long DNA targets by obtaining spectra of many short overlapping fragments of the target, inferring their relative positions along the target, and then computing spectra of subfragments that are short enough to be uniquely recoverable. Drmanac et al. do not treat the realistic case of errors in the hybridization process. In this paper, we study the effect of such errors. We show that the probability of ambiguous reconstruction in the presence of (false negative) errors is close to the probability in the errorless case. More precisely, the ratio between these probabilities is 1 + O(p = (1 - p)(4). 1 = d) where d is the average length of subfragments, and p is the probability of a false negative. We also obtain lower and upper bounds for the probability of unambiguous reconstruction based on an errorless spectrum. For realistic chip sizes, these bounds are tighter than those given by Arratia et al. (1996). Finally, we report results on simulations with real DNA sequences, showing that even in the presence of 50% false negative errors, a target of cosmid length can be recovered with less than 0.1% miscalled bases.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验