Suppr超能文献

鼠冠状病毒复制诱导的p38丝裂原活化蛋白激酶激活促进培养细胞中白细胞介素-6的产生和病毒复制。

Murine coronavirus replication-induced p38 mitogen-activated protein kinase activation promotes interleukin-6 production and virus replication in cultured cells.

作者信息

Banerjee Sangeeta, Narayanan Krishna, Mizutani Tetsuya, Makino Shinji

机构信息

Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1019, USA.

出版信息

J Virol. 2002 Jun;76(12):5937-48. doi: 10.1128/jvi.76.12.5937-5948.2002.

Abstract

Analyses of mitogen-activated protein kinases (MAPKs) in a mouse hepatitis virus (MHV)-infected macrophage-derived J774.1 cell line showed activation of two MAPKs, p38 MAPK and c-Jun N-terminal kinase (JNK), but not of extracellular signal-regulated kinase (ERK). Activation of MAPKs was evident by 6 h postinfection. However, UV-irradiated MHV failed to activate MAPKs, which demonstrated that MHV replication was necessary for their activation. Several other MHV-permissive cell lines also showed activation of both p38 MAPK and JNK, which indicated that the MHV-induced stress-kinase activation was not restricted to any particular cell type. The upstream kinase responsible for activating MHV-induced p38 MAPK was the MAPK kinase 3. Experiments with a specific inhibitor of p38 MAPK, SB 203580, demonstrated that MHV-induced p38 MAPK activation resulted in the accumulation of interleukin-6 (IL-6) mRNAs and an increase in the production of IL-6, regardless of MHV-induced general host protein synthesis inhibition. Furthermore, MHV production was suppressed in SB 203580-treated cells, demonstrating that activated p38 MAPK played a role in MHV replication. The reduced MHV production in SB 203580-treated cells was, at least in part, due to a decrease in virus-specific protein synthesis and virus-specific mRNA accumulation. Interestingly, there was a transient increase in the amount of phosphorylation of the translation initiation factor 4E (eIF4E) in infected cells, and this eIF4E phosphorylation was p38 MAPK dependent; it is known that phosphorylated eIF4E enhances translation rates of cap-containing mRNAs. Furthermore, the upstream kinase responsible for eIF4E phosphorylation, MAPK-interacting kinase 1, was also phosphorylated and activated in response to MHV infection. Our data suggested that host cells, in response to MHV replication, activated p38 MAPK, which subsequently phosphorylated eIF4E to efficiently translate certain host proteins, including IL-6, during virus-induced severe host protein synthesis inhibition. MHV utilized this p38 MAPK-dependent increase in eIF4E phosphorylation to promote virus-specific protein synthesis and subsequent progeny virus production. Enhancement of virus-specific protein synthesis through virus-induced eIF4E activation has not been reported in any other viruses.

摘要

对感染小鼠肝炎病毒(MHV)的巨噬细胞源性J774.1细胞系中的丝裂原活化蛋白激酶(MAPK)进行分析,结果显示两种MAPK,即p38 MAPK和c-Jun氨基末端激酶(JNK)被激活,但细胞外信号调节激酶(ERK)未被激活。感染后6小时MAPK的激活就很明显。然而,紫外线照射的MHV未能激活MAPK,这表明MHV复制对于它们的激活是必要的。其他几种对MHV敏感的细胞系也显示p38 MAPK和JNK均被激活,这表明MHV诱导的应激激酶激活并不局限于任何特定的细胞类型。负责激活MHV诱导的p38 MAPK的上游激酶是MAPK激酶3。使用p38 MAPK的特异性抑制剂SB 203580进行的实验表明,MHV诱导的p38 MAPK激活导致白细胞介素-6(IL-6)mRNA的积累以及IL-6产生的增加,而与MHV诱导的一般宿主蛋白合成抑制无关。此外,在SB 203580处理的细胞中MHV产生受到抑制,这表明活化的p38 MAPK在MHV复制中起作用。SB 203580处理的细胞中MHV产生减少至少部分是由于病毒特异性蛋白合成和病毒特异性mRNA积累的减少。有趣的是,感染细胞中翻译起始因子4E(eIF4E)的磷酸化量有短暂增加,并且这种eIF4E磷酸化是p38 MAPK依赖性的;已知磷酸化的eIF4E可提高含帽mRNA的翻译速率。此外,负责eIF4E磷酸化的上游激酶,即与MAPK相互作用的激酶1,也响应MHV感染而被磷酸化并激活。我们的数据表明,宿主细胞响应MHV复制而激活p38 MAPK,随后p38 MAPK磷酸化eIF4E,以便在病毒诱导的严重宿主蛋白合成抑制期间有效地翻译某些宿主蛋白,包括IL-6。MHV利用这种p38 MAPK依赖性的eIF4E磷酸化增加来促进病毒特异性蛋白合成和随后的子代病毒产生。通过病毒诱导的eIF4E激活来增强病毒特异性蛋白合成在任何其他病毒中均未报道过。

相似文献

8
Effect of p38 mitogen-activated protein kinase on the replication of encephalomyocarditis virus.
J Virol. 2003 May;77(10):5649-56. doi: 10.1128/jvi.77.10.5649-5656.2003.

引用本文的文献

3
p38-MAPK is prerequisite for the synthesis of SARS-CoV-2 protein.
Virusdisease. 2024 Jun;35(2):329-337. doi: 10.1007/s13337-024-00873-y. Epub 2024 May 27.
6
Therapeutic potential of chelerythrine as a multi-purpose adjuvant for the treatment of COVID-19.
Cell Cycle. 2021 Nov;20(22):2321-2336. doi: 10.1080/15384101.2021.1982509. Epub 2021 Sep 29.
8
The roles of signaling pathways in SARS-CoV-2 infection; lessons learned from SARS-CoV and MERS-CoV.
Arch Virol. 2021 Mar;166(3):675-696. doi: 10.1007/s00705-021-04958-7. Epub 2021 Jan 18.
10
Molecular Insights into the MAPK Cascade during Viral Infection: Potential Crosstalk between HCQ and HCQ Analogues.
Biomed Res Int. 2020 Dec 31;2020:8827752. doi: 10.1155/2020/8827752. eCollection 2020.

本文引用的文献

1
Negative regulation of protein translation by mitogen-activated protein kinase-interacting kinases 1 and 2.
Mol Cell Biol. 2001 Aug;21(16):5500-11. doi: 10.1128/MCB.21.16.5500-5511.2001.
2
Regulation of mRNA translation and cellular signaling by hepatitis C virus nonstructural protein NS5A.
J Virol. 2001 Jun;75(11):5090-8. doi: 10.1128/JVI.75.11.5090-5098.2001.
4
Mammalian MAP kinase signalling cascades.
Nature. 2001 Mar 1;410(6824):37-40. doi: 10.1038/35065000.
10
RNase L-independent specific 28S rRNA cleavage in murine coronavirus-infected cells.
J Virol. 2000 Oct;74(19):8793-802. doi: 10.1128/jvi.74.19.8793-8802.2000.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验