Suppr超能文献

短期视觉记忆的特征分割模型。

A feature-segmentation model of short-term visual memory.

作者信息

Sakai Koji, Inui Toshio

机构信息

Department of Human Relations, Faculty of Human Relations, Kyoto Koka Women's College, Japan.

出版信息

Perception. 2002;31(5):579-89. doi: 10.1068/p3320.

Abstract

A feature-segmentation model of short-term visual memory (STVM) for contours is proposed. Memory of the First stimulus is maintained until the second stimulus is observed. Three processes interact to determine the relationship between stimulus and response: feature encoding, memory, and decision. Basic assumptions of the model are twofold: (i) the STVM system divides a contour into convex parts at regions of concavity; and (ii) the value of each convex part represented in STVM is an independent Gaussian random variable. Simulation showed that the five-parameter fits give a good account of the effects of the four experimental variables. The model provides evidence that: (i) contours are successfully encoded within 0.5 s exposure, regardless of pattern complexity; (ii) memory noise increases as a linear function of retention interval; (iii) the capacity of STVM, defined by pattern complexity (the degree that a pattern can be handled for several seconds with little loss), is about 4 convex parts; and (iv) the confusability contributing to the decision process is a primary factor in deteriorating recognition of complex figures. It is concluded that visually presented patterns can be retained in STVM with considerable precision for prolonged periods of time, though some loss of precision is inevitable.

摘要

提出了一种用于轮廓的短期视觉记忆(STVM)的特征分割模型。对第一个刺激的记忆会一直保持到观察到第二个刺激。三个过程相互作用以确定刺激与反应之间的关系:特征编码、记忆和决策。该模型的基本假设包括两个方面:(i)STVM系统在凹陷区域将轮廓划分为凸部;(ii)STVM中表示的每个凸部的值是一个独立的高斯随机变量。模拟表明,五参数拟合很好地解释了四个实验变量的影响。该模型提供的证据表明:(i)无论图案复杂度如何,轮廓在0.5秒的曝光时间内都能成功编码;(ii)记忆噪声随着保持间隔呈线性增加;(iii)由图案复杂度(图案在几乎没有损失的情况下能被处理几秒钟的程度)定义的STVM容量约为4个凸部;(iv)导致决策过程的混淆性是复杂图形识别能力下降的主要因素。得出的结论是,视觉呈现的图案可以在STVM中长时间以相当高的精度保留,尽管一些精度损失是不可避免的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验