Caballero R D, García-Alvarez-Coque M C, Baeza-Baeza J J
Departamento de Química Analítica, Facultad de Química, Universitat de València, Burjassot, Spain.
J Chromatogr A. 2002 Apr 19;954(1-2):59-76. doi: 10.1016/s0021-9673(02)00194-2.
A new mathematical model for characterising skewed chromatographic peaks, which improves the previously reported polynomially modified Gaussian (PMG) model, is proposed. The model is a Gaussian based equation whose variance is a combined parabolic-Lorentzian function. The parabola accounts for the non-Gaussian shaped peak, whereas the Lorentzian function cancels the variance growth out of the elution region, which gives rise to a problematic baseline increase in the PMG model. The proposed parabolic-Lorentzian modified Gaussian (PLMG) model makes a correct description of peaks showing a wide range of asymmetry with positive and/or negative skewness. The new model is shown to give better fittings than other models as the Li, log-normal or Pap-Pápai models, which have a different mathematical basis. The model parameters are also related to peak properties as the skewness and kurtosis. The PLMG model is applied to the deconvolution of peaks in binary mixtures of structurally related compounds that are highly overlapped (retention times in min): oxytetracycline (9.00)--tetracycline (10.20), sulfathiazole (3.67)--sulfachloropyridazine (3.93), and sulfisoxazole (5.14)--sulfapyridine (5.24). The use of non-linear least-squares calibration in combination with the PLMG model gave superior results than the classical multiple linear least-squares and partial least-squares regressions. The proposed method takes into account run to run changes in retention time that occur along the injection of standards and samples, and the possible interactions that exist between the coeluting compounds. This decreases significantly the quantitation errors.
提出了一种用于表征不对称色谱峰的新数学模型,该模型改进了先前报道的多项式修正高斯(PMG)模型。该模型是一个基于高斯的方程,其方差是抛物线-洛伦兹函数的组合。抛物线描述了非高斯形状的峰,而洛伦兹函数消除了洗脱区域外方差的增长,这在PMG模型中会导致有问题的基线增加。所提出的抛物线-洛伦兹修正高斯(PLMG)模型能够正确描述具有正和/或负偏度的各种不对称峰。结果表明,新模型比其他具有不同数学基础的模型(如Li模型、对数正态模型或Pap-Pápai模型)拟合效果更好。模型参数还与峰的性质(如偏度和峰度)相关。PLMG模型应用于结构相关化合物二元混合物中高度重叠峰(保留时间以分钟计)的去卷积:土霉素(9.00)-四环素(10.20)、磺胺噻唑(3.67)-磺胺氯哒嗪(3.93)以及磺胺异恶唑(5.14)-磺胺吡啶(5.24)。将非线性最小二乘校准与PLMG模型相结合,比经典的多元线性最小二乘和偏最小二乘回归给出了更好的结果。所提出的方法考虑了在进样标准品和样品过程中保留时间的逐次变化以及共洗脱化合物之间可能存在的相互作用。这显著降低了定量误差。