Suppr超能文献

随机图上自组织临界性的非保守地震模型。

Nonconservative earthquake model of self-organized criticality on a random graph.

作者信息

Lise Stefano, Paczuski Maya

机构信息

Department of Mathematics, Huxley Building, Imperial College of Science, Technology, and Medicine, London SW7 2BZ, United Kingdom.

出版信息

Phys Rev Lett. 2002 Jun 3;88(22):228301. doi: 10.1103/PhysRevLett.88.228301. Epub 2002 May 16.

Abstract

We numerically investigate the Olami-Feder-Christensen model on a quenched random graph. Contrary to the case of annealed random neighbors, we find that the quenched model exhibits self-organized criticality deep within the nonconservative regime. The probability distribution for avalanche size obeys finite size scaling, with universal critical exponents. In addition, a power law relation between the size and the duration of an avalanche exists. We propose that this may represent the correct mean-field limit of the model rather than the annealed random neighbor version.

摘要

我们在淬火随机图上对奥拉米-费德-克里斯滕森模型进行了数值研究。与退火随机邻居的情况相反,我们发现淬火模型在非保守区域深处呈现出自组织临界性。雪崩规模的概率分布服从有限尺寸标度律,具有通用的临界指数。此外,雪崩的规模和持续时间之间存在幂律关系。我们提出,这可能代表了该模型正确的平均场极限,而非退火随机邻居版本。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验