Lise Stefano, Paczuski Maya
Department of Mathematics, Huxley Building, Imperial College of Science, Technology, and Medicine, London SW7 2BZ, United Kingdom.
Phys Rev Lett. 2002 Jun 3;88(22):228301. doi: 10.1103/PhysRevLett.88.228301. Epub 2002 May 16.
We numerically investigate the Olami-Feder-Christensen model on a quenched random graph. Contrary to the case of annealed random neighbors, we find that the quenched model exhibits self-organized criticality deep within the nonconservative regime. The probability distribution for avalanche size obeys finite size scaling, with universal critical exponents. In addition, a power law relation between the size and the duration of an avalanche exists. We propose that this may represent the correct mean-field limit of the model rather than the annealed random neighbor version.
我们在淬火随机图上对奥拉米-费德-克里斯滕森模型进行了数值研究。与退火随机邻居的情况相反,我们发现淬火模型在非保守区域深处呈现出自组织临界性。雪崩规模的概率分布服从有限尺寸标度律,具有通用的临界指数。此外,雪崩的规模和持续时间之间存在幂律关系。我们提出,这可能代表了该模型正确的平均场极限,而非退火随机邻居版本。