Heagerty Patrick J
Department of Biostatistics, University of Washington, Seattle 98195, USA.
Biometrics. 2002 Jun;58(2):342-51. doi: 10.1111/j.0006-341x.2002.00342.x.
Marginal generalized linear models are now frequently used for the analysis of longitudinal data. Semiparametric inference for marginal models was introduced by Liang and Zeger (1986, Biometrics 73, 13-22). This article develops a general parametric class of serial dependence models that permits likelihood-based marginal regression analysis of binary response data. The methods naturally extend the first-order Markov models of Azzalini (1994, Biometrika 81, 767-775) and prove computationally feasible for long series.
边际广义线性模型现在经常用于纵向数据的分析。Liang和Zeger(1986年,《生物统计学》73卷,第13 - 22页)引入了边际模型的半参数推断方法。本文开发了一类一般的参数化序列依赖模型,该模型允许对二元响应数据进行基于似然的边际回归分析。这些方法自然地扩展了Azzalini(1994年,《生物计量学》81卷,第767 - 775页)的一阶马尔可夫模型,并证明对于长序列在计算上是可行的。