Seward J R, Cronin M T D, Schultz T W
Graduate Program in Ecology and Evolutionary Biology, The University of Tennessee, Knoxville 37996-4500, USA.
SAR QSAR Environ Res. 2002 Mar;13(2):325-40. doi: 10.1080/10629360290002802.
The response-surface approach to QSARs attempts to model toxic potency of diverse groups of chemicals while avoiding problems associated with the identification of the mechanism of toxic action or specific chemical class often associated with other approaches. However, while hydrophobicity-dependent, simple regression QSARs derived for congeneric series of organic compounds typically have coefficients of determination greater than 0.90, more heterogeneous multiple regression QSARs exhibit typically 10-15% more unexplained variability. One difference between these approaches is the use of a quantum chemical (QC) descriptor, particularly molecular orbital (MO) energy values such as the energy of the lowest unoccupied molecular orbital (E(LUMO)). The reduced statistical fit exhibited by QSAR models, which include these QC-MO descriptors, could be a result of the variability inherent in the calculation of these descriptors. The present investigation with a structurally and mechanistically diverse set of pyridines revealed that variability is associated with the calculation of the MO descriptor E(LUMO) both between selected Hamiltonians and selected software packages. However, this variability in no way affects the statistical significance of QSARs for toxicity using these values. Specifically, the E(LUMO) values calculated with the PM3 and AM1 Hamiltonians in the two software packages were highly related. There was no relationship between molecular complexity or chemical reactivity and increased differences in individual ELUMO values as described by the standard errors of the mean. Although nine appeared to be the number of calculations, which best minimizes the standard error in energy values relative to computational costs; this minimization did not alter the statistics of the QSARs derived with single vs. mean E(LUMO) values. While the energy of the highest occupied molecular orbital (E(HOMO)) values were not used in the modeling of toxicity, a comparison of these values revealed greater variability between the Hamiltonians and software packages than observed for ELUMO values. Examination of the magnitudes of standard error of the E(HOMO) values in connection to structural features or reactivity likewise revealed no trends.
定量构效关系的响应面方法试图对不同化学物质组的毒性强度进行建模,同时避免与确定毒性作用机制或通常与其他方法相关的特定化学类别相关的问题。然而,虽然基于疏水性的、为同系有机化合物系列推导的简单回归定量构效关系通常具有大于0.90的决定系数,但更多异质的多元回归定量构效关系通常表现出多10 - 15%的无法解释的变异性。这些方法之间的一个差异是使用量子化学(QC)描述符,特别是分子轨道(MO)能量值,如最低未占分子轨道(E(LUMO))的能量。包含这些QC - MO描述符的定量构效关系模型所表现出的统计拟合度降低,可能是这些描述符计算中固有变异性的结果。目前对一组结构和机制多样的吡啶进行的研究表明,变异性与所选哈密顿量和所选软件包之间MO描述符E(LUMO)的计算有关。然而,这种变异性丝毫不会影响使用这些值的毒性定量构效关系的统计显著性。具体而言,在两个软件包中用PM3和AM1哈密顿量计算的E(LUMO)值高度相关。分子复杂性或化学反应性与如平均标准误差所描述的单个E(LUMO)值的差异增加之间没有关系。尽管九次计算似乎是相对于计算成本能使能量值标准误差最小化的计算次数;但这种最小化并没有改变用单个E(LUMO)值与平均E(LUMO)值推导的定量构效关系的统计结果。虽然最高占据分子轨道(E(HOMO))的能量值未用于毒性建模,但对这些值的比较显示,哈密顿量和软件包之间的变异性比E(LUMO)值更大。结合结构特征或反应性检查E(HOMO)值的标准误差大小同样没有发现趋势。