Schmieder P, Koleva Y, Mekenyan O
US-EPA, NHEERL, Mid-Continent Ecology Division, Duluth, MN 55804, USA.
SAR QSAR Environ Res. 2002 Mar;13(2):353-64. doi: 10.1080/10629360290002820.
Various models have been developed to predict the relative binding affinity (RBA) of chemicals to estrogen receptors (ER). These models can be used to prioritize chemicals for further tiered biological testing to assess the potential for endocrine disruption. One shortcoming of models predicting RBA has been the inability to distinguish potential receptor antagonism from agonism, and hence in vivo response. It has been suggested that steroid receptor antagonists are less compact than agonists; thus, ER binding of antagonists may prohibit proper alignment of receptor protein helices preventing subsequent transactivation. The current study tests the theory of chemical bulk as a defining parameter of antagonism by employing a 3-D structural approach for development of reactivity patterns for ER antagonists and agonists. Using a dataset of 23 potent ER ligands (16 agonists, 7 antagonists), molecular parameters previously found to be associated with ER binding affinity, namely global (E(HOMO)) and local (donor delocalizabilities and charges) electron donating ability of electronegative sites and steric distances between those sites, were found insufficient to discriminate ER antagonists from agonists. However, parameters related to molecular bulk, including solvent accessible surface and negatively charged Van der Waal's surface, provided reactivity patterns that were 100% successful in discriminating antagonists from agonists in the limited data set tested. The model also shows potential to discriminate pure antagonists from partial agonist/antagonist structures. Using this exploratory model it is possible to predict additional chemicals for their ability to bind but inactivate the ER, providing a further tool for hypothesis testing to elucidate chemical structural characteristics associated with estrogenicity and anti-estrogenicity.
已开发出各种模型来预测化学物质与雌激素受体(ER)的相对结合亲和力(RBA)。这些模型可用于对化学物质进行优先级排序,以便进一步进行分层生物学测试,以评估内分泌干扰的可能性。预测RBA的模型的一个缺点是无法区分潜在的受体拮抗作用和激动作用,从而无法区分体内反应。有人提出,类固醇受体拮抗剂不如激动剂紧凑;因此,拮抗剂与ER的结合可能会阻止受体蛋白螺旋的正确排列,从而阻止随后的反式激活。本研究通过采用三维结构方法来开发ER拮抗剂和激动剂的反应模式,测试了化学体积作为拮抗作用定义参数的理论。使用一个包含23种强效ER配体(16种激动剂、7种拮抗剂)的数据集,发现先前发现与ER结合亲和力相关的分子参数,即电负性位点的全局(E(HOMO))和局部(供体离域性和电荷)电子供体能力以及这些位点之间的空间距离,不足以区分ER拮抗剂和激动剂。然而,与分子体积相关的参数,包括溶剂可及表面和带负电荷的范德华表面,提供的反应模式在测试的有限数据集中100%成功地区分了拮抗剂和激动剂。该模型还显示出区分纯拮抗剂和部分激动剂/拮抗剂结构的潜力。使用这个探索性模型,可以预测其他化学物质结合但使ER失活的能力,为阐明与雌激素活性和抗雌激素活性相关的化学结构特征的假设检验提供进一步的工具。