Alkema Wynand B L, Prins Antoon K, de Vries Erik, Janssen Dick B
Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
Biochem J. 2002 Jul 1;365(Pt 1):303-9. doi: 10.1042/BJ20011468.
The active site of penicillin acylase of Escherichia coli contains two conserved arginine residues. The function of these arginines, alphaArg145 and betaArg263, was studied by site-directed mutagenesis and kinetic analysis of the mutant enzymes. The mutants alphaArg145-->Leu (alphaArg145Leu), alphaArg145Cys and alphaArg145Lys were normally processed and exported to the periplasm, whereas expression of the mutants betaArg263Leu, betaArg263Asn and betaArg263Lys yielded large amounts of precursor protein in the periplasm, indicating that betaArg263 is crucial for efficient processing of the enzyme. Either modification of both arginine residues by 2,3-butanedione or replacement by site-directed mutagenesis yielded enzymes with a decreased specificity (kcat/K(m)) for 2-nitro-5-[(phenylacetyl)amino]benzoic acid, indicating that both residues are important in catalysis. Compared with the wild type, the alphaArg145 mutants exhibited a 3-6-fold-increased preference for 6-aminopenicillanic acid as the deacylating nucleophile compared with water. Analysis of the steady-state parameters of these mutants for the hydrolysis of penicillin G and phenylacetamide indicated that destabilization of the Michaelis-Menten complex accounts for the improved activity with beta-lactam substrates. Analysis of pH-activity profiles of wild-type enzyme and the betaArg263Lys mutant showed that betaArg263 has to be positively charged for catalysis, but is not involved in substrate binding. The results provide an insight into the catalytic mechanism of penicillin acylase, in which alphaArg145 is involved in binding of beta-lactam substrates and betaArg263 is important both for stabilizing the transition state in the reaction and for correct processing of the precursor protein.
大肠杆菌青霉素酰化酶的活性位点含有两个保守的精氨酸残基。通过定点诱变和对突变酶的动力学分析,研究了这些精氨酸(αArg145和βArg263)的功能。突变体αArg145→Leu(αArg145Leu)、αArg145Cys和αArg145Lys通常能正常加工并转运至周质,而突变体βArg263Leu、βArg263Asn和βArg263Lys的表达则在周质中产生大量前体蛋白,这表明βArg263对该酶的有效加工至关重要。通过2,3 - 丁二酮对两个精氨酸残基进行修饰或通过定点诱变进行替换,都会产生对2 - 硝基 - 5 - [(苯乙酰基)氨基]苯甲酸的特异性(kcat/Km)降低的酶,这表明这两个残基在催化中都很重要。与野生型相比,αArg145突变体对6 - 氨基青霉烷酸作为脱酰基亲核试剂的偏好比水高3至6倍。对这些突变体水解青霉素G和苯乙酰胺的稳态参数分析表明,米氏复合物的不稳定解释了其对β - 内酰胺底物活性的提高。对野生型酶和βArg263Lys突变体的pH - 活性曲线分析表明,βArg263在催化时必须带正电荷,但不参与底物结合。这些结果为青霉素酰化酶的催化机制提供了深入了解,其中αArg145参与β - 内酰胺底物的结合,而βArg263对于稳定反应中的过渡态以及前体蛋白的正确加工都很重要。