Puccio Hélène, Koenig Michel
Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS/INSERM/ULP), 1 rue Laurent Fries BP163, 67404 Illkirch, CU de Strasbourg, France.
Curr Opin Genet Dev. 2002 Jun;12(3):272-7. doi: 10.1016/s0959-437x(02)00298-8.
Friedreich ataxia (FRDA), a progressive neurodegenerative disease, is due to the partial loss of function of frataxin, a mitochondrial protein of unknown function. Loss of frataxin causes mitochondrial iron accumulation, deficiency in the activities of iron-sulfur (Fe-S) proteins, and increased oxidative stress. Mouse models for FRDA demonstrate that the Fe-S deficit precedes iron accumulation, suggesting that iron accumulation is a secondary event. Furthermore, increased oxidative stress in FRDA patients has been demonstrated, and in vitro experiments imply that the frataxin defect impairs early antioxidant defenses. These results taken together suggest that frataxin may function either in mitochondrial iron homeostasis, in Fe-S cluster biogenesis, or directly in the response to oxidative stress. It is clear, however, that the pathogenic mechanism in FRDA involves free-radical production and oxidative stress, a process that appears to be sensitive to antioxidant therapies.
弗里德赖希共济失调(FRDA)是一种进行性神经退行性疾病,是由于一种功能未知的线粒体蛋白——酵母氨酸的功能部分丧失所致。酵母氨酸的缺失会导致线粒体铁积累、铁硫(Fe-S)蛋白活性缺乏以及氧化应激增加。FRDA的小鼠模型表明,Fe-S缺乏先于铁积累,这表明铁积累是继发事件。此外,已证实FRDA患者的氧化应激增加,体外实验表明酵母氨酸缺陷会损害早期抗氧化防御。综合这些结果表明,酵母氨酸可能在线粒体铁稳态、Fe-S簇生物合成中发挥作用,或直接参与氧化应激反应。然而,很明显,FRDA的致病机制涉及自由基产生和氧化应激,这一过程似乎对抗氧化疗法敏感。