Mainardi Jean-Luc, Morel Véronique, Fourgeaud Martine, Cremniter Julie, Blanot Didier, Legrand Raymond, Frehel Claude, Arthur Michel, Van Heijenoort Jean, Gutmann Laurent
INSERM EMI-U 0004 Laboratoire de Recherche Moléculaire sur les Antibiotiques, UFR Broussais-Hôtel Dieu, Université Paris VI, 75270 Paris, France.
J Biol Chem. 2002 Sep 27;277(39):35801-7. doi: 10.1074/jbc.M204319200. Epub 2002 Jun 19.
The d,d-transpeptidase activity of high molecular weight penicillin-binding proteins (PBPs) is essential to maintain cell wall integrity as it catalyzes the final cross-linking step of bacterial peptidoglycan synthesis. We investigated a novel beta-lactam resistance mechanism involving by-pass of the essential PBPs by l,d-transpeptidation in Enterococcus faecium. Determination of the peptidoglycan structure by reverse phase high performance liquid chromatography coupled to mass spectrometry revealed that stepwise selection for ampicillin resistance led to the gradual replacement of the usual cross-links generated by the PBPs (d-Ala(4) --> d-Asx-Lys(3)) by cross-links resulting from l,d-transpeptidation (l-Lys(3) --> d-Asx-Lys(3)). This was associated with no modification of the level of production of the PBPs or of their affinity for beta-lactams, indicating that altered PBP activity was not required for ampicillin resistance. A beta-lactam-insensitive l,d-transpeptidase was detected in membrane preparations of the parental susceptible strain. Acquisition of resistance was not because of variation of this activity. Instead, selection led to production of a beta-lactam-insensitive d,d-carboxypeptidase that cleaved the C-terminal d-Ala residue of pentapeptide stems in vitro and caused massive accumulation of cytoplasmic precursors containing a tetrapeptide stem in vivo. The parallel dramatic increase in the proportion of l-Lys(3) --> d-Asx-Lys(3) cross-links showed that the enzyme was activating the resistance pathway by generating the substrate for the l,d-transpeptidase.
高分子量青霉素结合蛋白(PBPs)的d,d-转肽酶活性对于维持细胞壁完整性至关重要,因为它催化细菌肽聚糖合成的最终交联步骤。我们研究了一种新的β-内酰胺耐药机制,该机制涉及粪肠球菌通过l,d-转肽作用绕过必需的PBPs。通过反相高效液相色谱与质谱联用测定肽聚糖结构,结果显示逐步选择氨苄西林耐药性导致由PBPs产生的通常交联(d-Ala(4)→d-Asx-Lys(3))逐渐被l,d-转肽作用产生的交联(l-Lys(3)→d-Asx-Lys(3))所取代。这与PBPs的产生水平或其对β-内酰胺的亲和力没有改变相关,表明氨苄西林耐药性不需要改变PBP活性。在亲本敏感菌株的膜制剂中检测到一种β-内酰胺不敏感的l,d-转肽酶。获得耐药性并非由于这种活性的变化。相反,选择导致产生一种β-内酰胺不敏感的d,d-羧肽酶,该酶在体外切割五肽茎的C末端d-Ala残基,并在体内导致含有四肽茎的细胞质前体大量积累。l-Lys(3)→d-Asx-Lys(3)交联比例的平行显著增加表明,该酶通过产生l,d-转肽酶的底物来激活耐药途径。