Lee Jennifer C, Chang I-Jy, Gray Harry B, Winkler Jay R
Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA.
J Mol Biol. 2002 Jul 5;320(2):159-64. doi: 10.1016/S0022-2836(02)00466-7.
We have investigated the folding energy landscape of cytochrome c by exploiting the widely different electron-transfer (ET) reactivities of buried and exposed Zn(II)-substituted hemes. An electronically excited Zn-porphyrin in guanidine hydrochloride denatured Zn-substituted cytochrome c (Zn-cyt c) reduces ruthenium(III) hexaammine about ten times faster than when embedded in the fully folded protein. Measurements of ET kinetics during Zn-cyt c folding reveal a burst intermediate in which one-third of the ensemble has a protected Zn-porphyrin and slow ET kinetics; the remaining fraction exhibits fast ET characteristic of a solvent-exposed redox cofactor. The ET data show that, under solvent conditions favoring the folded protein, collapsed non-native structures are not substantially more stable than extended conformations, and that the two populations interchange rapidly. Most of the folding free energy, then, is released when compact structures evolve into the native fold.
我们通过利用埋藏的和暴露的锌(II)取代血红素在电子转移(ET)反应活性上的巨大差异,研究了细胞色素c的折叠能量景观。在盐酸胍中变性的锌取代细胞色素c(Zn-cyt c)中,处于电子激发态的锌卟啉还原六氨合钌(III)的速度比嵌入完全折叠的蛋白质中时快约十倍。Zn-cyt c折叠过程中的ET动力学测量揭示了一个爆发中间体,其中三分之一的聚集体具有受保护的锌卟啉且ET动力学缓慢;其余部分表现出溶剂暴露的氧化还原辅因子的快速ET特征。ET数据表明,在有利于折叠蛋白的溶剂条件下,塌缩的非天然结构并不比伸展构象稳定得多,且这两种构象群体快速互换。因此,当紧凑结构演变成天然折叠时,大部分折叠自由能被释放出来。