Bi Xiaohong, Flach Carol R, Pérez-Gil Jesus, Plasencia Inés, Andreu David, Oliveira Eliandre, Mendelsohn Richard
Department of Chemistry, Newark College of Arts and Science, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, USA.
Biochemistry. 2002 Jul 2;41(26):8385-95. doi: 10.1021/bi020129g.
Pulmonary surfactant, a thin lipid/protein film lining mammalian lungs, functions in vivo to reduce the work of breathing and to prevent alveolar collapse. Analogues of two hydrophobic surfactant proteins, SP-B and SP-C, have been incorporated into therapeutic agents for respiratory distress syndrome, a pathological condition resulting from deficiency in surfactant. To facilitate rational design of therapeutic agents, a molecular level understanding of lipid interaction with surfactant proteins or their analogues in aqueous monolayer films is necessary. The current work uses infrared reflection-absorption spectroscopy (IRRAS) to determine peptide conformation and the effects of S-palmitoylation on the lipid interactions of a synthetic 13 residue N-terminal peptide [SP-C13(palm)(2)] of SP-C, in mixtures with 1,2-dipalmitoylphosphatidylcholine (DPPC) or 1,2-dipalmitoylphosphatidylglycerol (DPPG). Two Amide I' features, at approximately 1655 and approximately 1639 cm(-1) in the peptide IRRAS spectra, are assigned to alpha-helical peptide bonds in hydrophobic and aqueous environments, respectively. In binary DPPC/SP-C13(palm)(2) films, the proportion of hydrated/hydrophobic helix increases reversibly with surface pressure (pi), suggestive of the peptide being squeezed out from hydrophobic regions of the monolayer. No such effect was observed for DPPG/peptide monolayers, indicative of stronger, probably electrostatic, interactions. Depalmitoylation produced a weakened interaction with either phospholipid as deduced from IRRAS spectra and from pi-area isotherms. S-Palmitoylation may modulate peptide hydration and conformation in the N-terminal region of SP-C and may thus permit the peptide to remain in the film at the high surface pressures present during lung compression. The unique capability of IRRAS to detect the surface pressure dependence of protein or peptide structure/interactions in a physiologically relevant model for surfactant is clearly demonstrated.
肺表面活性剂是一层覆盖在哺乳动物肺部的薄脂质/蛋白质膜,在体内发挥作用以减少呼吸功并防止肺泡塌陷。两种疏水性表面活性剂蛋白SP - B和SP - C的类似物已被纳入治疗呼吸窘迫综合征的药物中,呼吸窘迫综合征是一种由表面活性剂缺乏引起的病理状况。为了便于合理设计治疗药物,有必要从分子水平了解脂质与表面活性剂蛋白或其类似物在水单层膜中的相互作用。目前的工作使用红外反射吸收光谱(IRRAS)来确定肽的构象以及S - 棕榈酰化对SP - C的合成13残基N端肽[SP - C13(palm)(2)]与1,2 - 二棕榈酰磷脂酰胆碱(DPPC)或1,2 - 二棕榈酰磷脂酰甘油(DPPG)混合物中脂质相互作用的影响。在肽的IRRAS光谱中,约1655 cm(-1)和约1639 cm(-1)处的两个酰胺I'特征分别归属于疏水和水环境中的α - 螺旋肽键。在二元DPPC/SP - C13(palm)(2)膜中,水合/疏水螺旋的比例随表面压力(π)可逆增加,这表明肽从单层的疏水区域被挤出。对于DPPG/肽单层未观察到这种效应,这表明存在更强的、可能是静电的相互作用。从IRRAS光谱和π - 面积等温线推断,去棕榈酰化导致与任何一种磷脂的相互作用减弱。S - 棕榈酰化可能调节SP - C N端区域中肽的水合作用和构象,从而可能使肽在肺压缩期间存在的高表面压力下保留在膜中。清楚地证明了IRRAS在表面活性剂的生理相关模型中检测蛋白质或肽结构/相互作用的表面压力依赖性的独特能力。