Cosenza Lawrence W, Bringaud Frederic, Baltz Theo, Vellieux Frederic M D
Laboratoire de Biophysique Moleculaire, Institut de Biologie Structurale J.-P. Ebel CEA CNRS UJF, Grenoble, France.
J Mol Biol. 2002 May 17;318(5):1417-32. doi: 10.1016/s0022-2836(02)00113-4.
The crystal structure of the glycosomal enzyme pyruvate phosphate dikinase from the African protozoan parasite Trypanosoma brucei has been solved to 3.0 A resolution by molecular replacement. The search model was the 2.3 A resolution structure of the Clostridium symbiosum enzyme. Due to different relative orientations of the domains and sub-domains in the two structures, molecular replacement could be achieved only by positioning these elements (four bodies altogether) sequentially in the asymmetric unit of the P2(1)2(1)2 crystal, which contains one pyruvate phosphate dikinase (PPDK) subunit. The refined model, comprising 898 residues and 188 solvent molecules per subunit, has a crystallographic residual index Rf = 0.245 (cross-validation residual index Rfree = 0.291) and displays satisfactory stereochemistry. Eight regions, comprising a total of 69 amino acid residues at the surface of the molecule, are disordered in this crystal form. The PPDK subunits are arranged around the crystallographic 2-fold axis as a dimer, analogous to that observed in the C. symbiosum enzyme. Comparison of the two structures was carried out by superposition of the models. Although the fold of each domain or sub-domain is similar, the relative orientations of these constitutive elements are different in the two structures. The trypanosome enzyme is more "bent" than the bacterial enzyme, with bending increasing from the center of the molecule (close to the molecular 2-fold axis) towards the periphery where the N-terminal domain is located. As a consequence of this increased bending and of the differences in relative positions of subdomains, the nucleotide-binding cleft in the amino-terminal domain is wider in T. brucei PPDK: the N-terminal fragment of the amino-terminal domain is distant from the catalytic, phospho-transfer competent histidine 482 (ca 10 A away). Our observations suggest that the requirements of domain motion during enzyme catalysis might include widening of the nucleotide-binding cleft to allow access and departure of the AMP or ATP ligand.
通过分子置换法,已将来自非洲原生动物寄生虫布氏锥虫的糖体酶丙酮酸磷酸二激酶的晶体结构解析到3.0 Å分辨率。搜索模型是共生梭菌酶2.3 Å分辨率的结构。由于两种结构中结构域和亚结构域的相对取向不同,只有通过在P2(1)2(1)2晶体的不对称单元中依次定位这些元件(总共四个实体)才能实现分子置换,该晶体包含一个丙酮酸磷酸二激酶(PPDK)亚基。优化后的模型每个亚基包含898个残基和188个溶剂分子,晶体学残余指数Rf = 0.245(交叉验证残余指数Rfree = 0.291),并显示出令人满意的立体化学性质。分子表面共有8个区域,包含69个氨基酸残基,在此晶体形式中无序。PPDK亚基围绕晶体学二重轴排列成二聚体,类似于在共生梭菌酶中观察到的情况。通过模型叠加对两种结构进行了比较。虽然每个结构域或亚结构域的折叠相似,但这些组成元件在两种结构中的相对取向不同。锥虫酶比细菌酶更“弯曲”,弯曲程度从分子中心(靠近分子二重轴)向N端结构域所在的外围增加。由于这种增加的弯曲以及亚结构域相对位置的差异,布氏锥虫PPDK氨基端结构域中的核苷酸结合裂隙更宽:氨基端结构域的N端片段距离催化性的、具有磷酸转移能力的组氨酸482较远(约10 Å)。我们的观察结果表明,酶催化过程中结构域运动的要求可能包括拓宽核苷酸结合裂隙,以允许AMP或ATP配体的进入和离开。