Suppr超能文献

[(18)O]-oxygen incorporation reveals novel pathways in spiroacetal biosynthesis by Bactrocera cacuminata and B. cucumis.

作者信息

Fletcher Mary T, Wood Barry J, Brereton Ian M, Stok Jeanette E, De Voss James J, Kitching William

机构信息

Department of Chemistry and Centre for Magnetic Resonance, The University of Queensland, Brisbane 4072, Australia.

出版信息

J Am Chem Soc. 2002 Jul 3;124(26):7666-7. doi: 10.1021/ja026215l.

Abstract

The origins of the oxygen atoms in 1,7-dioxaspiro[5.5]undecane (1) and hydroxyspiroacetal (2) from Bactrocera cacuminata, and in 2,8-dimethyl-1,7-dioxaspiro[5.5]undecane (3) and hydroxyspiroacetal (4) from B. cucumis, have been investigated by incorporation studies from both [(18)O(2)]-dioxygen and [(18)O]-water. Combined GC-MS examination and high-field NMR analysis have demonstrated that all oxygen atoms in 1 and 2 from B. cacuminata are dioxygen derived, but in contrast, the spiroacetals 3 and 4 from B. cucumis incorporate one ring oxygen from water and one ring oxygen (and the hydroxyl oxygen in 4) from [(18)O(2)]-dioxygen. These results reveal not only the generality of monoxygenase mediation of spiroacetal formation in Bactrocera sp., but also an unexpected complexity in their biosynthesis. A general paradigm accommodating these and other observations is presented.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验