Nickenig Georg, Baudler Stephanie, Müller Cornelius, Werner Christian, Werner Nikos, Welzel Hilke, Strehlow Kerstin, Böhm Michael
Universitätskliniken des Saarlandes, Medizinische Klinik und Poliklinik, Innere Medizin III, 66424 Homburg/Saar, Germany.
FASEB J. 2002 Jul;16(9):1077-86. doi: 10.1096/fj.01-0570com.
Reactive oxygen species such as superoxide and hydroxyl radicals have been implicated in the pathogenic growth of various cell types. The molecular mechanisms involved in redox-sensitive cell growth control are poorly understood. Stimulation of cultured vascular smooth muscle cells (VSMC) with xanthin/xanthin oxidase (X/XO) increases proliferation, whereas stimulation with hydrogen peroxide and Fe3+NTA (H-Fe) causes growth arrest of VSMC. Differential Display led to the identification of two novel, differentially regulated redox-sensitive genes. The dominant negative helix-loop-helix protein Id3 is induced by X/XO and down-regulated by H-Fe. The transcription factor gut-enriched Kruppel-like factor (GKLF) is induced by H-Fe but not by X/XO. Induction of GKLF and inhibition of Id3 via transfection experiments leads to growth arrest, whereas overexpression of Id3 and inhibition of GKLF cause cell growth. Id3 down-regulation is induced via binding of GKLF to the Id3 promotor and concomitantly reduced Id3 gene transcription rate. GKLF induction by H-Fe is mediated through hydroxyl radicals, p38MAP kinase-, calcium-, and protein synthesis-dependent pathways. Id3 is induced by X/XO via superoxide, calcium, p38, and p42/44 MAP kinase. GKLF induces and Id3 depresses expression of p21WAF1/Cip1, p27KIP1, p53. Induction of Id3 is accomplished by angiotensin II via superoxide release. A vascular injury mouse model revealed that Id3 is overexpressed in proliferating vascular tissue in vivo. These findings reveal novel mechanisms of redox-controlled cellular proliferation involving GKLF and Id3 that may have general implications for our understanding of vascular and nonvascular growth control.
超氧化物和羟基自由基等活性氧已被认为与多种细胞类型的致病生长有关。对氧化还原敏感的细胞生长控制所涉及的分子机制目前了解甚少。用黄嘌呤/黄嘌呤氧化酶(X/XO)刺激培养的血管平滑肌细胞(VSMC)可增加其增殖,而用过氧化氢和Fe3+NTA(H-Fe)刺激则会导致VSMC生长停滞。差异显示技术导致鉴定出两个新的、受不同调节的氧化还原敏感基因。显性负性螺旋-环-螺旋蛋白Id3由X/XO诱导并被H-Fe下调。转录因子肠道富集型Kruppel样因子(GKLF)由H-Fe诱导,但不由X/XO诱导。通过转染实验诱导GKLF并抑制Id3会导致生长停滞,而过表达Id3并抑制GKLF则会导致细胞生长。Id3的下调是通过GKLF与Id3启动子结合并同时降低Id3基因转录速率来诱导的。H-Fe对GKLF的诱导是通过羟基自由基、p38丝裂原活化蛋白激酶、钙和蛋白质合成依赖的途径介导的。Id3由X/XO通过超氧化物、钙、p38和p42/44丝裂原活化蛋白激酶诱导。GKLF诱导而Id3抑制p21WAF1/Cip1、p27KIP1、p53的表达。血管紧张素II通过超氧化物释放完成对Id3的诱导。一个血管损伤小鼠模型显示,Id3在体内增殖的血管组织中过度表达。这些发现揭示了氧化还原控制细胞增殖的新机制,涉及GKLF和Id3,这可能对我们理解血管和非血管生长控制具有普遍意义。