Suppr超能文献

提高大肠杆菌来源的6-脱氧红霉内酯B产量的工艺和代谢策略

Process and metabolic strategies for improved production of Escherichia coli-derived 6-deoxyerythronolide B.

作者信息

Pfeifer Blaine, Hu Zhihao, Licari Peter, Khosla Chaitan

机构信息

Department of Chemical Engineering, Stanford University, Stanford, CA 94305-5025, USA.

出版信息

Appl Environ Microbiol. 2002 Jul;68(7):3287-92. doi: 10.1128/AEM.68.7.3287-3292.2002.

Abstract

Recently, the feasibility of using Escherichia coli for the heterologous biosynthesis of complex polyketides has been demonstrated. In this report, the development of a robust high-cell-density fed-batch procedure for the efficient production of complex polyketides is described. The effects of various physiological conditions on the productivity and titers of 6-deoxyerythronolide B (6dEB; the macrocyclic core of the antibiotic erythromycin) in recombinant cultures of E. coli were studied in shake flask cultures. The resulting data were used as a foundation to develop a high-cell-density fermentation procedure by building upon procedures reported earlier for recombinant protein production in E. coli. The fermentation strategy employed consistently produced approximately 100 mg of 6dEB per liter, whereas shake flask conditions generated between 1 and 10 mg per liter. The utility of an accessory thioesterase (TEII from Saccharopolyspora erythraea) for enhancing the productivity of 6dEB in E. coli was also demonstrated (increasing the final titer of 6dEB to 180 mg per liter). In addition to reinforcing the potential for using E. coli as a heterologous host for wild-type- and engineered-polyketide biosynthesis, the procedures described in this study may be useful for the production of secondary metabolites that are difficult to access by other routes.

摘要

最近,已证明利用大肠杆菌进行复杂聚酮化合物的异源生物合成是可行的。在本报告中,描述了一种用于高效生产复杂聚酮化合物的稳健的高细胞密度补料分批培养方法的开发。在摇瓶培养中研究了各种生理条件对大肠杆菌重组培养物中6-脱氧红霉内酯B(6dEB;抗生素红霉素的大环核心)的生产力和滴度的影响。所得数据被用作基础,通过借鉴早期报道的大肠杆菌重组蛋白生产方法来开发高细胞密度发酵方法。所采用的发酵策略始终能产生每升约100毫克的6dEB,而摇瓶条件下每升产生1至10毫克。还证明了一种辅助硫酯酶(来自糖多孢红霉菌的TEII)在提高大肠杆菌中6dEB生产力方面的效用(将6dEB的最终滴度提高到每升180毫克)。除了增强将大肠杆菌用作野生型和工程化聚酮化合物生物合成的异源宿主的潜力外,本研究中描述的方法可能有助于生产难以通过其他途径获得的次级代谢产物。

相似文献

1
Process and metabolic strategies for improved production of Escherichia coli-derived 6-deoxyerythronolide B.
Appl Environ Microbiol. 2002 Jul;68(7):3287-92. doi: 10.1128/AEM.68.7.3287-3292.2002.
3
Production of the polyketide 6-deoxyerythronolide B in the heterologous host Bacillus subtilis.
Appl Microbiol Biotechnol. 2016 Feb;100(3):1209-1220. doi: 10.1007/s00253-015-6990-6. Epub 2015 Oct 2.
4
Improving heterologous polyketide production in Escherichia coli by transporter engineering.
Appl Microbiol Biotechnol. 2015 Oct;99(20):8691-700. doi: 10.1007/s00253-015-6718-7. Epub 2015 Jun 11.
6
Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli.
Science. 2001 Mar 2;291(5509):1790-2. doi: 10.1126/science.1058092.
7
Construction and performance of heterologous polyketide-producing K-12- and B-derived Escherichia coli.
Lett Appl Microbiol. 2010 Aug;51(2):196-204. doi: 10.1111/j.1472-765X.2010.02880.x. Epub 2010 Jun 1.
8
Probing the heterologous metabolism supporting 6-deoxyerythronolide B biosynthesis in Escherichia coli.
Microb Biotechnol. 2009 May;2(3):390-4. doi: 10.1111/j.1751-7915.2009.00099.x. Epub 2009 Mar 19.
10
6-deoxyerythronolide B production through chromosomal localization of the deoxyerythronolide B synthase genes in E. coli.
Metab Eng. 2008 Jan;10(1):33-8. doi: 10.1016/j.ymben.2007.09.002. Epub 2007 Sep 20.

引用本文的文献

1
Metabolic Engineering of for Enhanced Diols Production from Acetate.
ACS Synth Biol. 2025 Apr 18;14(4):1204-1219. doi: 10.1021/acssynbio.4c00839. Epub 2025 Mar 18.
2
Refactoring the pikromycin synthase for the modular biosynthesis of macrolide antibiotics in E. coli.
Res Sq. 2025 Jan 8:rs.3.rs-5640596. doi: 10.21203/rs.3.rs-5640596/v1.
3
Multiple Functions of the Type II Thioesterase Associated with the Phoslactomycin Polyketide Synthase.
Biochemistry. 2022 Dec 6;61(23):2662-2671. doi: 10.1021/acs.biochem.2c00234. Epub 2022 Nov 15.
4
Engineered biosynthesis of alkyne-tagged polyketides.
Methods Enzymol. 2022;665:347-373. doi: 10.1016/bs.mie.2021.11.013. Epub 2021 Dec 21.
5
Optimizing a Fed-Batch High-Density Fermentation Process for Medium Chain-Length Poly(3-Hydroxyalkanoates) in .
Front Bioeng Biotechnol. 2021 Feb 26;9:618259. doi: 10.3389/fbioe.2021.618259. eCollection 2021.
6
Microbial upgrading of acetate into 2,3-butanediol and acetoin by W.
Biotechnol Biofuels. 2020 Oct 22;13:177. doi: 10.1186/s13068-020-01816-7. eCollection 2020.
7
Heterologous Production of 6-Deoxyerythronolide B in through the Wood Werkman Cycle.
Metabolites. 2020 Jun 1;10(6):228. doi: 10.3390/metabo10060228.
8
Recycling of Overactivated Acyls by a Type II Thioesterase during Calcimycin Biosynthesis in Streptomyces chartreusis NRRL 3882.
Appl Environ Microbiol. 2018 May 31;84(12). doi: 10.1128/AEM.00587-18. Print 2018 Jun 15.
9
Generate a bioactive natural product library by mining bacterial cytochrome P450 patterns.
Synth Syst Biotechnol. 2016 Feb 26;1(2):95-108. doi: 10.1016/j.synbio.2016.01.007. eCollection 2016 Jun.
10
A non-canonical peptide synthetase adenylates 3-methyl-2-oxovaleric acid for auriculamide biosynthesis.
Beilstein J Org Chem. 2016 Dec 16;12:2766-2770. doi: 10.3762/bjoc.12.274. eCollection 2016.

本文引用的文献

1
Enhancing the atom economy of polyketide biosynthetic processes through metabolic engineering.
Biotechnol Prog. 2001 Jul-Aug;17(4):612-7. doi: 10.1021/bp010045j.
3
Biosynthesis of polyketides in heterologous hosts.
Microbiol Mol Biol Rev. 2001 Mar;65(1):106-18. doi: 10.1128/MMBR.65.1.106-118.2001.
4
Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli.
Science. 2001 Mar 2;291(5509):1790-2. doi: 10.1126/science.1058092.
6
Impact of thioesterase activity on tylosin biosynthesis in Streptomyces fradiae.
Chem Biol. 1999 May;6(5):287-92. doi: 10.1016/S1074-5521(99)80074-X.
9
Harnessing the biosynthetic code: combinations, permutations, and mutations.
Science. 1998 Oct 2;282(5386):63-8. doi: 10.1126/science.282.5386.63.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验