线粒体功能的多样性解释了血管氧感知的差异。
Diversity in mitochondrial function explains differences in vascular oxygen sensing.
作者信息
Michelakis Evangelos D, Hampl Vaclav, Nsair Ali, Wu XiCheng, Harry Gwyneth, Haromy Al, Gurtu Rachita, Archer Stephen L
机构信息
Department of Medicine (Cardiology) and the Vascular Biology Group, University of Alberta, Edmonton, Alberta, Canada.
出版信息
Circ Res. 2002 Jun 28;90(12):1307-15. doi: 10.1161/01.res.0000024689.07590.c2.
Renal arteries (RAs) dilate in response to hypoxia, whereas the pulmonary arteries (PAs) constrict. In the PA, O2 tension is detected by an unidentified redox sensor, which controls K+ channel function and thus smooth muscle cell (SMC) membrane potential and cytosolic calcium. Mitochondria are important regulators of cellular redox status and are candidate vascular O2 sensors. Mitochondria-derived activated oxygen species (AOS), like H2O2, can diffuse to the cytoplasm and cause vasodilatation by activating sarcolemmal K+ channels. We hypothesize that mitochondrial diversity between vascular beds explains the opposing responses to hypoxia in PAs versus RAs. The effects of hypoxia and proximal electron transport chain (pETC) inhibitors (rotenone and antimycin A) were compared in rat isolated arteries, vascular SMCs, and perfused organs. Hypoxia and pETC inhibitors decrease production of AOS and outward K+ current and constrict PAs while increasing AOS production and outward K+ current and dilating RAs. At baseline, lung mitochondria have lower respiratory rates and higher rates of AOS and H2O2 production. Similarly, production of AOS and H2O2 is greater in PA versus RA rings. SMC mitochondrial membrane potential is more depolarized in PAs versus RAs. These differences relate in part to the lower expression of proximal ETC components and greater expression of mitochondrial manganese superoxide dismutase in PAs versus RAs. Differential regulation of a tonically produced, mitochondria-derived, vasodilating factor, possibly H2O2, can explain the opposing effects of hypoxia on the PAs versus RAs. We conclude that the PA and RA have different mitochondria.
肾动脉(RA)会因缺氧而扩张,而肺动脉(PA)则会收缩。在肺动脉中,一种尚未明确的氧化还原传感器可检测氧张力,该传感器控制钾离子通道功能,进而影响平滑肌细胞(SMC)的膜电位和胞质钙。线粒体是细胞氧化还原状态的重要调节因子,也是潜在的血管氧传感器。线粒体衍生的活性氧(AOS),如过氧化氢(H2O2),可扩散至细胞质并通过激活肌膜钾离子通道引起血管舒张。我们推测,血管床之间线粒体的差异解释了肺动脉与肾动脉对缺氧的相反反应。我们比较了缺氧和近端电子传递链(pETC)抑制剂(鱼藤酮和抗霉素A)对大鼠离体动脉、血管平滑肌细胞及灌注器官的影响。缺氧和pETC抑制剂会减少AOS的产生和外向钾电流,并使肺动脉收缩,同时增加AOS的产生和外向钾电流,并使肾动脉扩张。在基线状态下,肺线粒体的呼吸速率较低,AOS和H2O2的产生速率较高。同样,肺动脉环中AOS和H2O2的产生量也高于肾动脉环。与肾动脉相比,肺动脉中平滑肌线粒体膜电位的去极化程度更高。这些差异部分与肺动脉中近端ETC成分的表达较低以及线粒体锰超氧化物歧化酶的表达较高有关。对一种持续产生的、线粒体衍生的血管舒张因子(可能是H2O2)的不同调节,可以解释缺氧对肺动脉和肾动脉的相反作用。我们得出结论,肺动脉和肾动脉具有不同的线粒体。