Miyamoto Yoshiaki, Nabeshima Toshitaka
Department of Molecular Genetics, National Institute for Longevity Sciences, 36-3 Gengo, Morioka-cho, Oobu 474-8522.
Nihon Yakurigaku Zasshi. 2002 Jun;119(6):327-35. doi: 10.1254/fpj.119.327.
The NMDA subtype of glutamate receptor (GluR) plays an important role in excitatory neurotransmission, synaptic plasticity, brain development, and neurodegeneration. NMDA receptors are inherent high Ca(2+)-permeable channels, which are formed by heteromeric assembly of the GluR zeta 1 subunit (NR1) and any one of four GluR epsilon subunits (GluR epsilon 1-4; NR2A-D). Mice lacking the GluR epsilon 1 subunit exhibited a malfunction of NMDA receptors, as evidenced by reduction of NMDA receptor channel current, hippocampal long-term potentiation, [3H]MK-801 binding, and NMDA-stimulated 45Ca2+ uptake. A biochemical analysis revealed a hyperfunction of dopaminergic and serotonergic neuronal systems in the frontal cortex and striatum of GluR epsilon 1 mutant mice. The enhancement of dopaminergic neuronal activity in the striatum, at least, due to the disinhibition of inhibitory GABAergic neuronal input. GluR epsilon 1 mutant mice showed an increase of locomotor activity in a novel environment attributed to the hyperfunction of the dopaminergic neuronal system, and an impairment of spatial, contextual, and latent learning. These findings provide evidence that NMDA receptors regulate behavior through the modulation of not only glutamatergic but also GABAergic and dopaminergic neuronal systems. Moreover, it is suggested that GluR epsilon 1 mutant mice are useful as an animal model, which is associated with the malfunction of NMDA receptors and hyperfunction of the dopaminergic neuronal system.
谷氨酸受体(GluR)的N-甲基-D-天冬氨酸(NMDA)亚型在兴奋性神经传递、突触可塑性、大脑发育和神经退行性变中起重要作用。NMDA受体是内在的高钙离子通透性通道,由GluR ζ 1亚基(NR1)与四个GluR ε亚基(GluR ε 1-4;NR2A-D)中的任何一个通过异源组装形成。缺乏GluR ε 1亚基的小鼠表现出NMDA受体功能障碍,这可通过NMDA受体通道电流减少、海马长时程增强、[3H]MK-801结合以及NMDA刺激的45Ca2+摄取减少来证明。生化分析显示,GluR ε 1突变小鼠额叶皮质和纹状体中的多巴胺能和5-羟色胺能神经元系统功能亢进。至少由于抑制性GABA能神经元输入的去抑制作用,纹状体中多巴胺能神经元活动增强。GluR ε 1突变小鼠在新环境中表现出运动活动增加,这归因于多巴胺能神经元系统功能亢进,以及空间、情境和潜在学习能力受损。这些发现提供了证据,表明NMDA受体不仅通过调节谷氨酸能神经元系统,还通过调节GABA能和多巴胺能神经元系统来调节行为。此外,提示GluR ε 1突变小鼠可作为一种动物模型,与NMDA受体功能障碍和多巴胺能神经元系统功能亢进相关。