Suppr超能文献

A leaf sequencing algorithm to enlarge treatment field length in IMRT.

作者信息

Xia Ping, Hwang Andrew B, Verhey Lynn J

机构信息

The Department of Radiation Oncology, University of California at San Francisco, Comprehensive Cancer Center, 94143-1708, USA.

出版信息

Med Phys. 2002 Jun;29(6):991-8. doi: 10.1118/1.1477236.

Abstract

With MLC-based IMRT, the maximum usable field size is often smaller than the maximum field size for conventional treatments. This is due to the constraints of the overtravel distances of MLC leaves and/or jaws. Using a new leaf sequencing algorithm, the usable IMRT field length (perpendicular to the MLC motion) can be mostly made equal to the full length of the MLC field without violating the upper jaw overtravel limit. For any given intensity pattern, a criterion was proposed to assess whether an intensity pattern can be delivered without violation of the jaw position constraints. If the criterion is met, the new algorithm will consider the jaw position constraints during the segmentation for the step and shoot delivery method. The strategy employed by the algorithm is to connect the intensity elements outside the jaw overtravel limits with those inside the jaw overtravel limits. Several methods were used to establish these connections during segmentation by modifying a previously published algorithm (areal algorithm), including changing the intensity level, alternating the leaf-sequencing direction, or limiting the segment field size. The algorithm was tested with 1000 random intensity patterns with dimensions of 21 x 27 cm2, 800 intensity patterns with higher intensity outside the jaw overtravel limit, and three different types of clinical treatment plans that were undeliverable using a segmentation method from a commercial treatment planning system. The new algorithm achieved a success rate of 100% with these test patterns. For the 1,000 random patterns, the new algorithm yields a similar average number of segments of 36.9 +/- 2.9 in comparison to 36.6 +/- 1.3 when using the areal algorithm. For the 800 patterns with higher intensities outside the jaw overtravel limits, the new algorithm results in an increase of 25% in the average number of segments compared to the areal algorithm. However, the areal algorithm fails to create deliverable segments for 90% of these patterns. Using a single isocenter, the new algorithm provides a solution to extend the usable IMRT field length from 21 to 27 cm for IMRT on a commercial linear accelerator using the step and shoot delivery method.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验