Suppr超能文献

不对称站立时人类前庭诱发姿势反应的双足分布

Bipedal distribution of human vestibular-evoked postural responses during asymmetrical standing.

作者信息

Marsden J F, Castellote J, Day B L

机构信息

MRC Human Movement Group, Sobell Department for Motor Neurophysiology and Movement Disorders, Institute of Neurology, 8-11 Queen Square, London WCIN 3BG.

出版信息

J Physiol. 2002 Jul 1;542(Pt 1):323-31. doi: 10.1113/jphysiol.2002.019513.

Abstract

Galvanic vestibular stimulation (GVS) evokes responses in muscles of both legs when bilateral stimuli are applied during normal stance. We have used this technique to assess whether asymmetrical standing alters the distribution of responses in the two legs. Subjects stood either asymmetrically with 75% of their body weight on one leg or symmetrically with each leg taking 50% of their body weight. The net response in each leg was taken from changes in ground reaction force measured from separate force plates under each foot. The net force profile consisted of a small initial force change that peaked at approximately 200 ms followed by an oppositely directed larger component that peaked at approximately 450 ms. We analysed the second force component since it was responsible for the kinematic response of lateral body sway and tilt towards the anode. In the horizontal plane, both legs produced lateral force responses that were in the same direction but larger in the leg ipsilateral to the cathodal ear. There were also vertical force responses that were of equal size in both legs but acted in opposite directions. When subjects stood asymmetrically the directions of the force responses remained the same but their magnitudes changed. The lateral force response became 2-3 times larger for the more loaded leg and the vertical forces increased 1.5 times on average for both legs. Control experiments showed that these changes could not be explained by either the consistent (< 5 deg) head tilt towards the side of the loaded leg or the changes in background muscle activity associated with the asymmetrical posture. We conclude that the redistribution of force responses in the two legs arises from a load-sensing mechanism. We suggest there is a central interaction between load-related afferent input from the periphery and descending motor signals from balance centres.

摘要

在正常站立时施加双侧电刺激,前庭电刺激(GVS)会引起双腿肌肉的反应。我们使用该技术来评估不对称站立是否会改变双腿反应的分布。受试者要么单腿承受75%体重的不对称站立,要么双腿各承受50%体重的对称站立。每条腿的净反应取自每只脚下单独测力板测量的地面反作用力的变化。净力曲线由一个小的初始力变化组成,该变化在大约200毫秒时达到峰值,随后是一个方向相反的较大分量,在大约450毫秒时达到峰值。我们分析了第二个力分量,因为它负责身体向阳极侧横向摆动和倾斜的运动反应。在水平面内,双腿产生的横向力反应方向相同,但阴极耳同侧的腿上的反应更大。双腿也有大小相等但方向相反的垂直力反应。当受试者不对称站立时,力反应的方向保持不变,但大小发生了变化。负重较大的腿的横向力反应增大2至3倍,双腿的垂直力平均增加1.5倍。对照实验表明,这些变化既不能用向负重腿一侧持续(<5度)的头部倾斜来解释,也不能用与不对称姿势相关的背景肌肉活动的变化来解释。我们得出结论,双腿力反应的重新分布源于一种负荷传感机制。我们认为,来自外周的与负荷相关的传入输入和来自平衡中心的下行运动信号之间存在中枢相互作用。

相似文献

1
Bipedal distribution of human vestibular-evoked postural responses during asymmetrical standing.
J Physiol. 2002 Jul 1;542(Pt 1):323-31. doi: 10.1113/jphysiol.2002.019513.
2
Human body-segment tilts induced by galvanic stimulation: a vestibularly driven balance protection mechanism.
J Physiol. 1997 May 1;500 ( Pt 3)(Pt 3):661-72. doi: 10.1113/jphysiol.1997.sp022051.
3
Triggering of balance corrections and compensatory strategies in a patient with total leg proprioceptive loss.
Exp Brain Res. 2002 Jan;142(1):91-107. doi: 10.1007/s00221-001-0926-3. Epub 2001 Nov 14.
4
Task-dependent reflex responses and movement illusions evoked by galvanic vestibular stimulation in standing humans.
J Physiol. 1994 Jul 15;478 ( Pt 2)(Pt 2):363-72. doi: 10.1113/jphysiol.1994.sp020257.
5
Modulation of human vestibular-evoked postural responses by alterations in load.
J Physiol. 2003 May 1;548(Pt 3):949-53. doi: 10.1113/jphysiol.2002.029991. Epub 2003 Mar 7.
6
Vestibular stimulation affects medium latency postural muscle responses.
Exp Brain Res. 2002 May;144(1):95-102. doi: 10.1007/s00221-002-1041-9. Epub 2002 Mar 5.
7
Paraspinal muscle response to electrical vestibular stimulation.
Acta Otolaryngol. 2000 Jan;120(1):39-46. doi: 10.1080/000164800760370819.
9
Asymmetrical stabilization and mobilization exploited during static single leg stance and goal directed kicking.
Hum Mov Sci. 2017 Aug;54:182-190. doi: 10.1016/j.humov.2017.05.004. Epub 2017 May 11.
10
Modification of human postural response to leg muscle vibration by electrical vestibular stimulation.
Neurosci Lett. 1995 Apr 7;189(1):9-12. doi: 10.1016/0304-3940(95)11436-z.

引用本文的文献

1
Assessment of vestibulocortical interactions during standing in healthy subjects.
PLoS One. 2020 Jun 4;15(6):e0233843. doi: 10.1371/journal.pone.0233843. eCollection 2020.
2
The Vestibular Drive for Balance Control Is Dependent on Multiple Sensory Cues of Gravity.
Front Physiol. 2019 Apr 30;10:476. doi: 10.3389/fphys.2019.00476. eCollection 2019.
4
The medium latency muscle response to a vestibular perturbation is increased after depression of the cerebellar vermis.
Brain Behav. 2017 Aug 22;7(10):e00782. doi: 10.1002/brb3.782. eCollection 2017 Oct.
5
Co-ordination of the upper and lower limbs for vestibular control of balance.
J Physiol. 2017 Nov 1;595(21):6771-6782. doi: 10.1113/JP274272. Epub 2017 Sep 22.
6
Neurons in the pontomedullary reticular formation receive converging inputs from the hindlimb and labyrinth.
Exp Brain Res. 2017 Apr;235(4):1195-1207. doi: 10.1007/s00221-017-4875-x. Epub 2017 Feb 10.
7
Rapid limb-specific modulation of vestibular contributions to ankle muscle activity during locomotion.
J Physiol. 2017 Mar 15;595(6):2175-2195. doi: 10.1113/JP272614. Epub 2017 Feb 22.
8
Transformation of Vestibular Signals for the Control of Standing in Humans.
J Neurosci. 2016 Nov 9;36(45):11510-11520. doi: 10.1523/JNEUROSCI.1902-16.2016.
9
Vestibular feedback maintains reaching accuracy during body movement.
J Physiol. 2017 Feb 15;595(4):1339-1349. doi: 10.1113/JP273125. Epub 2016 Nov 13.
10
The direction of the postural response to a vestibular perturbation is mediated by the cerebellar vermis.
Exp Brain Res. 2016 Dec;234(12):3689-3697. doi: 10.1007/s00221-016-4766-6. Epub 2016 Sep 6.

本文引用的文献

1
Adaptation of Postural Stability following Stroke.
Top Stroke Rehabil. 1997 Jan;3(4):62-75. doi: 10.1080/10749357.1997.11781074.
3
Reflex adaptations during treadmill walking with increased body load.
Exp Brain Res. 2001 Mar;137(2):133-40. doi: 10.1007/s002210000628.
4
Changing patterns of postural hip muscle activity during recovery from stroke.
Clin Rehabil. 2000 Dec;14(6):618-26. doi: 10.1191/0269215500cr370oa.
5
The effect of shoe lifts on static and dynamic postural control in individuals with hemiparesis.
Arch Phys Med Rehabil. 2000 Nov;81(11):1498-503. doi: 10.1053/apmr.2000.17827.
6
Major role for sensory feedback in soleus EMG activity in the stance phase of walking in man.
J Physiol. 2000 Mar 15;523 Pt 3(Pt 3):817-27. doi: 10.1111/j.1469-7793.2000.00817.x.
7
Load-regulating mechanisms in gait and posture: comparative aspects.
Physiol Rev. 2000 Jan;80(1):83-133. doi: 10.1152/physrev.2000.80.1.83.
8
Postural responses to unilateral arm perturbation in young, elderly, and hemiplegic subjects.
Arch Phys Med Rehabil. 1997 Oct;78(10):1072-7. doi: 10.1016/s0003-9993(97)90130-1.
9
Human body-segment tilts induced by galvanic stimulation: a vestibularly driven balance protection mechanism.
J Physiol. 1997 May 1;500 ( Pt 3)(Pt 3):661-72. doi: 10.1113/jphysiol.1997.sp022051.
10
Human lumbosacral spinal cord interprets loading during stepping.
J Neurophysiol. 1997 Feb;77(2):797-811. doi: 10.1152/jn.1997.77.2.797.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验