Sun Qian-Quan, Huguenard John R, Prince David A
Department of Neurology and Neurological Science, Stanford School of Medicine, Stanford, California 94305, USA.
J Neurosci. 2002 Jul 1;22(13):5374-86. doi: 10.1523/JNEUROSCI.22-13-05374.2002.
We examined the effects of somatostatin (SST) on neurons in the thalamic reticular nucleus (RT) using whole-cell patch-clamp techniques applied to visualized neurons in rat thalamic slices. SST, acting via sst(5) receptors and pertussis toxin-sensitive G-proteins, activated an inwardly rectifying K(+) (GIRK) current in 20 of 28 recorded cells to increase input conductance 15 +/- 3% above control and inhibited N-type Ca(2+) currents in 17 of 24 neurons via voltage-dependent mechanisms. SST reversibly depressed evoked EPSCs (eEPSCs) to 37 +/- 8% of control without altering their kinetics. SST-mediated inhibition of eEPSCs showed short-term relief from block during 25 Hz stimulus trains. SST also reduced the frequency (33 +/- 8%) but not the amplitude of miniature EPSCs (mEPSCs). These data indicate that SST mediates presynaptic inhibition of glutamate release onto RT neurons. In current-clamp recordings, SST preferentially inhibited burst discharges mediated by near-threshold corticothalamic EPSPs and intracellularly applied depolarizing currents. SST had powerful effects on in vitro intrathalamic rhythms, which included a shortening of the duration and a reduction in spike count within each oscillatory event. Furthermore, there was a paradoxical increase in the synchrony of epileptiform oscillations, likely mediated by a suppression of the responses to weak synaptic inputs in RT. We conclude that SST suppresses discharges in RT neurons, via presynaptic inhibition of glutamate release and postsynaptic activation of GIRK channels, leading to the dampening of both spindle-like and epileptiform thalamic network oscillations. SST may act as an important endogenous regulator of physiological and pathological thalamocortical network activities.
我们运用全细胞膜片钳技术,对大鼠丘脑切片中可视化的神经元进行研究,以探讨生长抑素(SST)对丘脑网状核(RT)神经元的影响。SST通过sst(5)受体和百日咳毒素敏感的G蛋白发挥作用,在28个记录细胞中的20个细胞中激活了内向整流钾电流(GIRK),使输入电导比对照增加15±3%,并通过电压依赖性机制在24个神经元中的17个神经元中抑制了N型钙电流。SST可逆地将诱发的兴奋性突触后电流(eEPSCs)抑制至对照的37±8%,且不改变其动力学。SST介导的eEPSCs抑制在25Hz刺激串期间表现出短期的阻断缓解。SST还降低了微小兴奋性突触后电流(mEPSCs)的频率(33±8%),但不改变其幅度。这些数据表明,SST介导了对RT神经元谷氨酸释放的突触前抑制。在电流钳记录中,SST优先抑制由接近阈值的皮质丘脑兴奋性突触后电位和细胞内施加的去极化电流介导的爆发性放电。SST对体外丘脑内节律有强大影响,包括缩短每个振荡事件的持续时间和减少尖峰计数。此外,癫痫样振荡的同步性出现了反常增加,这可能是由RT中对弱突触输入反应的抑制介导的。我们得出结论,SST通过突触前抑制谷氨酸释放和突触后激活GIRK通道来抑制RT神经元的放电,导致纺锤样和癫痫样丘脑网络振荡的减弱。SST可能是生理和病理丘脑皮质网络活动的重要内源性调节因子。