Suppr超能文献

鱼类鳃对氨的排泄和尿素的处理:当前的认识与未来的研究挑战

Ammonia excretion and urea handling by fish gills: present understanding and future research challenges.

作者信息

Wilkie Michael Patrick

机构信息

Division of Life Sciences, University of Toronto at Scarborough, Scarborough, Ontario, M1C 1A6 Canada.

出版信息

J Exp Zool. 2002 Aug 1;293(3):284-301. doi: 10.1002/jez.10123.

Abstract

In fresh water fishes, ammonia is excreted across the branchial epithelium via passive NH(3) diffusion. This NH(3) is subsequently trapped as NH(4)(+) in an acidic unstirred boundary layer lying next to the gill, which maintains the blood-to-gill water NH(3) partial pressure gradient. Whole animal, in situ, ultrastructural and molecular approaches suggest that boundary layer acidification results from the hydration of CO(2) in the expired gill water, and to a lesser extent H(+) excretion mediated by apical H(+)-ATPases. Boundary layer acidification is insignificant in highly buffered sea water, where ammonia excretion proceeds via NH(3) diffusion, as well as passive NH(4)(+) diffusion due to the greater ionic permeability of marine fish gills. Although Na(+)/H(+) exchangers (NHE) have been isolated in marine fish gills, possible Na(+)/NH(4)(+) exchange via these proteins awaits evaluation using modern electrophysiological and molecular techniques. Although urea excretion (J(Urea)) was thought to be via passive diffusion, it is now clear that branchial urea handling requires specialized urea transporters. Four urea transporters have been cloned in fishes, including the shark kidney urea transporter (shUT), which is a facilitated urea transporter similar to the mammalian renal UT-A2 transporter. Another urea transporter, characterized but not yet cloned, is the basolateral, Na(+) dependent urea antiporter of the dogfish gill, which is essential for urea retention in ureosmotic elasmobranchs. In ureotelic teleosts such as the Lake Magadi tilapia and the gulf toadfish, the cloned mtUT and tUT are facilitated urea transporters involved in J(Urea). A basolateral urea transporter recently cloned from the gill of the Japanese eel (eUT) may actually be important for urea retention during salt water acclimation. A multi-faceted approach, incorporating whole animal, histological, biochemical, pharmacological, and molecular techniques is required to learn more about the location, mechanism of action, and functional significance of urea transporters in fishes.

摘要

在淡水鱼中,氨通过被动的NH₃扩散穿过鳃上皮排出。随后,这种NH₃在紧邻鳃的酸性静止边界层中以NH₄⁺的形式被捕获,这维持了血液与鳃水之间的NH₃分压梯度。整体动物、原位、超微结构和分子方法表明,边界层酸化是由呼出的鳃水中CO₂的水合作用导致的,在较小程度上是由顶端H⁺ - ATP酶介导的H⁺排泄引起的。在高度缓冲的海水中,边界层酸化并不显著,在海水中氨的排泄通过NH₃扩散以及由于海水鱼鳃更大的离子通透性导致的被动NH₄⁺扩散进行。尽管在海水鱼鳃中已分离出Na⁺/H⁺交换体(NHE),但通过这些蛋白质进行可能的Na⁺/NH₄⁺交换有待使用现代电生理和分子技术进行评估。尽管尿素排泄(J(Urea))曾被认为是通过被动扩散,但现在很清楚,鳃对尿素的处理需要专门的尿素转运体。在鱼类中已克隆出四种尿素转运体,包括鲨鱼肾脏尿素转运体(shUT),它是一种易化尿素转运体,类似于哺乳动物肾脏的UT - A2转运体。另一种已被鉴定但尚未克隆的尿素转运体是角鲨鳃的基底外侧、依赖Na⁺的尿素反向转运体,它对于尿素渗透压的板鳃亚纲动物中尿素的保留至关重要。在排尿素的硬骨鱼如马加迪湖罗非鱼和海湾蟾鱼中,克隆的mtUT和tUT是参与J(Urea)的易化尿素转运体。最近从日本鳗鱼鳃中克隆出的基底外侧尿素转运体(eUT)实际上可能对海水适应过程中尿素的保留很重要。需要采用多方面的方法,结合整体动物、组织学、生化、药理学和分子技术,以更多地了解鱼类中尿素转运体的位置、作用机制和功能意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验