Suppr超能文献

用于从蛋白质的傅里叶变换红外光谱快速定量蛋白质二级结构的酰胺I频率自动选择

Automatic amide I frequency selection for rapid quantification of protein secondary structure from Fourier transform infrared spectra of proteins.

作者信息

Hering Joachim A, Innocent Peter R, Haris Parvez I

机构信息

Department of Biological Sciences, De Montfort University, Leicester, UK.

出版信息

Proteomics. 2002 Jul;2(7):839-49. doi: 10.1002/1615-9861(200207)2:7<839::AID-PROT839>3.0.CO;2-L.

Abstract

Here we report the development of a new neural network based approach for rapid quantification of protein secondary structure from Fourier transform infrared (FTIR) spectra of proteins. A technique for efficiently reducing the amount of spectral data by almost 90% is suggested to facilitate faster neural network analysis. Additionally, an automatic procedure is introduced for selecting only those regions within the amide I band of protein FTIR spectra, which can be best related to secondary structure contents by subsequent neural network analysis. Based on a given reference set of FTIR spectra from proteins with known secondary structure, a subset of merely 29 out of 101 amide I absorbance values could be identified, which lead to an improved prediction accuracy. The average prediction accuracy achieved for helix, sheet, turn, bend, and other is 4.96% which is better than that achieved by alternative methods that have been previously reported indicating the significant potential of this approach. Our suggested automatic amide I frequency selection procedure may be easily extended to identify promising regions from spectral data recorded by other spectroscopic techniques, like for example circular dichroism spectroscopy.

摘要

在此,我们报告了一种基于神经网络的新方法的开发,该方法用于从蛋白质的傅里叶变换红外(FTIR)光谱中快速定量蛋白质二级结构。提出了一种有效减少近90%光谱数据量的技术,以促进更快的神经网络分析。此外,还引入了一种自动程序,用于仅选择蛋白质FTIR光谱酰胺I带内那些通过后续神经网络分析与二级结构含量最相关的区域。基于具有已知二级结构的蛋白质的给定FTIR光谱参考集,在101个酰胺I吸光度值中仅可识别出29个的子集,这导致了预测准确性的提高。对于螺旋、片层、转角、弯曲和其他结构,实现的平均预测准确率为4.96%,这优于先前报道的其他方法所达到的准确率,表明了该方法的巨大潜力。我们建议的酰胺I频率自动选择程序可以很容易地扩展,以从其他光谱技术(如圆二色光谱)记录的光谱数据中识别有前景的区域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验