Zajac Felix E
Rehabilitation R & D Center (153), VA Palo Alto Health Care System, CA 94304, USA.
J Biomech. 2002 Aug;35(8):1011-8. doi: 10.1016/s0021-9290(02)00046-5.
Muscles coordinate multijoint motion by generating forces that cause reaction forces throughout the body. Thus, a muscle can redistribute existing segmental energy by accelerating some segments and decelerating others. In the process, a muscle may also produce or absorb energy, in which case its summed energetic effect on the segments is positive or negative, respectively. This Borelli Lecture shows how dynamical simulations derived from musculoskeletal models reveal muscle-induced segmental energy redistribution and muscle co-functions and synergies. Synergy occurs when co-excited muscles distribute segmental energy differently to execute the motor task. In maximum height jumping, high vertical velocity at lift-off occurs desirably at full body extension because biarticular leg muscles redistribute the energy produced by the uniarticular leg muscles. In pedaling, synergistic ankle plantarflexor force generation during leg extension allows the high energy produced by the uniarticular hip and knee extensors to be delivered to the crank. An analogous less-powerful flexor synergy exists during leg flexion. Hamstrings reduce crank deceleration during the leg extension-to-flexion transition by not only producing energy but delivering it to the crank through its contribution to the tangential (accelerating) crank force, though this hamstrings function occurs at the opposite (flexion-extension) transition when pedaling backwards. In walking, the eccentric quadriceps activity in early stance not only decelerates the leg but also accelerates the trunk. In mid-stance, the uni- and biarticular plantarflexors, by having opposite segmental energetic effects, act in synergy to support the whole body, so segmental potential and kinetic energy exchange can occur. To conclude, the extraction of unmeasurable variables from dynamical simulations emulating task kinematics, kinetics, and EMGs shows how the production of force and energy by individual muscles contribute to the energy flow among the individual segments during task execution.
肌肉通过产生力来协调多关节运动,这些力会在全身引起反作用力。因此,一块肌肉可以通过加速一些节段并使其他节段减速来重新分配现有的节段能量。在此过程中,肌肉也可能产生或吸收能量,在这种情况下,其对节段的总能量效应分别为正或负。本次博雷利讲座展示了从肌肉骨骼模型得出的动力学模拟如何揭示肌肉引起的节段能量重新分配以及肌肉的共同功能和协同作用。当共同兴奋的肌肉以不同方式分配节段能量以执行运动任务时,就会出现协同作用。在跳高时,离地时的高垂直速度理想情况下出现在全身伸展时,因为双关节腿部肌肉会重新分配单关节腿部肌肉产生的能量。在蹬踏板时,腿部伸展过程中协同的踝关节跖屈力的产生,使得单关节髋部和膝部伸肌产生的高能量能够传递到曲柄上。在腿部弯曲时存在类似的较弱的屈肌协同作用。在从腿部伸展到弯曲的过渡过程中,腘绳肌不仅通过产生能量,还通过对切向(加速)曲柄力的贡献将能量传递到曲柄上,从而减少曲柄减速,不过当向后蹬踏板时,这种腘绳肌的功能发生在相反的(弯曲 - 伸展)过渡阶段。在行走时,站立初期股四头肌的离心活动不仅使腿部减速,还使躯干加速。在站立中期,单关节和双关节跖屈肌通过具有相反的节段能量效应协同作用以支撑全身,从而可以发生节段势能和动能的交换。总之,从模拟任务运动学、动力学和肌电图的动力学模拟中提取不可测量的变量,展示了单个肌肉产生力和能量如何在任务执行过程中促进各个节段之间的能量流动。