Zaugg Michael, Lucchinetti Eliana, Spahn Donat R, Pasch Thomas, Schaub Marcus C
Institute of Anesthesiology, University Hospital Zurich, Zurich, Switzerland.
Anesthesiology. 2002 Jul;97(1):4-14. doi: 10.1097/00000542-200207000-00003.
Volatile anesthetics induce pharmacological preconditioning in cardiac tissue. The purpose of this study was to test whether volatile anesthetics mediate this effect by activation of the mitochondrial adenosine triphosphate-sensitive potassium (mitoK(ATP)) or sarcolemmal K(ATP) (sarcK(ATP)) channel in rat ventricular myocytes and to evaluate the signaling pathways involved.
A cellular model of ischemia with subsequent hypoosmolar trypan blue staining served to determine the effects of 5-hydroxydecanoate, a selective mitoK(ATP) channel blocker, HMR-1098, a selective sarcK(ATP) channel blocker, diazoxide, a preconditioning mimicking agent, and various modulators of putative signaling pathways on cardioprotection elicited by sevoflurane and isoflurane. Microscopy was used to visualize and measure autofluorescence of flavoproteins, a direct index of mitoK(ATP) channel activity.
Volatile anesthetics significantly enhanced diazoxide-mediated activation of mitoK(ATP) channels as assessed by autofluorescence of myocytes. Conversely, volatile anesthetics alone did not alter mitoK(ATP) channel activity, implying a priming effect of volatile anesthetics on mitoK(ATP) channels. Administration of the protein kinase C inhibitor chelerythrine completely blocked this effect. Also, pretreatment with volatile anesthetics potentiated diazoxide-mediated protection against ischemia, as indicated by a reduction in trypan blue-positive myocytes. Importantly, cardioprotection afforded by volatile anesthetics was unaffected by the sarcK(ATP) channel blocker HMR-1098 but sensitive to modulations of nitric oxide and adenosine-G(i) signaling pathways.
Using autofluorescence in live cell imaging microscopy and a simulated model of ischemia, the authors present evidence that volatile anesthetics mediate their protection in cardiomyocytes by selectively priming mitoK(ATP) channels through multiple triggering protein kinase C-coupled signaling pathways. These observations provide important new insight into the mechanisms of anesthetic-induced preconditioning.
挥发性麻醉药可诱导心脏组织产生药理学预处理。本研究旨在测试挥发性麻醉药是否通过激活大鼠心室肌细胞中的线粒体三磷酸腺苷敏感性钾通道(mitoK(ATP))或肌膜K(ATP)通道(sarcK(ATP))介导这种效应,并评估其中涉及的信号通路。
采用缺血后低渗台盼蓝染色的细胞模型,以确定5-羟基癸酸(一种选择性mitoK(ATP)通道阻滞剂)、HMR-1098(一种选择性sarcK(ATP)通道阻滞剂)、二氮嗪(一种预处理模拟剂)以及各种假定信号通路调节剂对七氟烷和异氟烷诱导的心脏保护作用的影响。利用显微镜观察并测量黄素蛋白的自发荧光,这是mitoK(ATP)通道活性的直接指标。
通过心肌细胞的自发荧光评估,挥发性麻醉药显著增强了二氮嗪介导的mitoK(ATP)通道激活。相反,单独使用挥发性麻醉药不会改变mitoK(ATP)通道活性,这意味着挥发性麻醉药对mitoK(ATP)通道有启动作用。给予蛋白激酶C抑制剂白屈菜红碱可完全阻断这种效应。此外,挥发性麻醉药预处理可增强二氮嗪介导的对缺血的保护作用,表现为台盼蓝阳性心肌细胞减少。重要的是,挥发性麻醉药提供的心脏保护作用不受sarcK(ATP)通道阻滞剂HMR-1098的影响,但对一氧化氮和腺苷-G(i)信号通路的调节敏感。
作者利用活细胞成像显微镜中的自发荧光和缺血模拟模型,提供证据表明挥发性麻醉药通过多种触发蛋白激酶C偶联信号通路选择性启动mitoK(ATP)通道,从而介导其对心肌细胞的保护作用。这些观察结果为麻醉诱导预处理的机制提供了重要的新见解。