Yasunari Kenichi, Maeda Kensaku, Nakamura Munehiro, Yoshikawa Junichi
Department of Cardiology, Graduate School of Medicine, Osaka City University, Japan.
Hypertens Res. 2002 May;25(3):419-25. doi: 10.1291/hypres.25.419.
The cellular mechanisms by which hypertension enhances atherosclerosis are still not known in detail. Recently, evidence has been obtained that oxidative stress plays a role in the pathogenesis of pressure-induced atherosclerosis. We examined the effects of pressure on oxidative stress in cultured human coronary smooth muscle cells (SMCs). Application of increased pressure (+100 mmHg) with He gas for 48 h increased oxidative stress of measured by flow cytometry by 71% and F2-isopretane by 77%. Increased pressure also increased the activities of phospholipase D (PLD), and particulate protein kinase C (PKC). The PLD inhibitor suramin 100 micromol/l, 1-butanol 40 mmol/l, and the PKC inhibitors chelerythrine 1 micromol/l and calphostin C 100 nmol/l and completely blocked the increase in oxidative stress induced by pressure. Carvedilol 1 micromol/l but not propranolol 1 micromol/l blocked pressure-induced increases in oxidative stress in cultured SMCs. These findings suggest that pressure increases oxidative stress and that carvedilol significantly inhibits pressure-induced increase in oxidative stress in cultured human coronary smooth muscle cells.