Suppr超能文献

用于预测蛋白质二级结构的单通道衰减全反射傅里叶变换红外光谱法

Single-pass attenuated total reflection Fourier transform infrared spectroscopy for the prediction of protein secondary structure.

作者信息

Smith Brandye M, Oswald Lisa, Franzen Stefan

机构信息

Department of Chemistry, North Carolina State University, Raleigh 27695-8204, USA.

出版信息

Anal Chem. 2002 Jul 15;74(14):3386-91. doi: 10.1021/ac020104n.

Abstract

Principal component regression (PCR) was applied to a spectral library of proteins in H2O solution acquired by single-pass attenuated total reflectance (ATR) Fourier transform infrared (FT-IR) spectroscopy. PCR was used to predict the secondary structure content, principally alpha-helical and the beta-sheet content, of proteins within a spectral library. Quantitation of protein secondary structure content was performed as a proof of principle that use of single-pass ATR-FT-IR is an appropriate method for protein secondary structure analysis. The ATR-FT-IR method permits acquisition of the entire spectral range from 700 to 3900 cm(-1) without significant interference from water bands. An "inside model space" bootstrap and a genetic algorithm (GA) were used to improve prediction results. Specifically, the bootstrap was utilized to increase the number of replicates for adequate training and validation of the PCR model. The GA was used to optimize PCR parameters, particularly wavenumber selection. The use of the bootstrap allowed for adequate representation of variability in the amide A, amide B, and C-H stretching regions due to differing levels of sample hydration. Implementation of the bootstrap improved the robustness of the PCR models significantly; however, the use of a GA only slightly improved prediction results. Two spectral libraries are presented where one was better suited for beta-sheet content prediction and the other for alpha-helix content prediction. The GA-optimized PCR method for alpha-helix content prediction utilized 120 wavenumbers within the amide I, II, A, B, and IV and the C-H stretching regions and 18 factors. For beta-sheet content predictions, 580 wavenumbers within the amide I, II, A, and B and the C-H stretching regions and 18 factors were used. The validation results using these two methods yielded an average absolute error of 1.7% for alpha-helix content prediction and an average absolute error of 2.3% for beta-sheet content prediction. After the PCR models were developed and validated, they were used to predict the alpha-helix and beta-sheet content of two unknowns, casein and immunoglobulin G.

摘要

主成分回归(PCR)应用于通过单通道衰减全反射(ATR)傅里叶变换红外(FT-IR)光谱获得的H2O溶液中蛋白质的光谱库。PCR用于预测光谱库中蛋白质的二级结构含量,主要是α-螺旋和β-折叠含量。对蛋白质二级结构含量进行定量是为了证明单通道ATR-FT-IR是蛋白质二级结构分析的一种合适方法。ATR-FT-IR方法允许在700至3900 cm(-1)的整个光谱范围内采集数据,而不受水带的显著干扰。使用“内部模型空间”自举法和遗传算法(GA)来改善预测结果。具体而言,自举法用于增加重复次数,以便对PCR模型进行充分的训练和验证。GA用于优化PCR参数,特别是波数选择。自举法的使用能够充分体现由于样品水化程度不同而导致的酰胺A、酰胺B和C-H伸缩区域的变异性。自举法的实施显著提高了PCR模型的稳健性;然而,GA的使用仅略微改善了预测结果。给出了两个光谱库,其中一个更适合β-折叠含量预测,另一个适合α-螺旋含量预测。用于α-螺旋含量预测的GA优化PCR方法在酰胺I、II、A、B和IV以及C-H伸缩区域内使用了120个波数和18个因子。对于β-折叠含量预测,在酰胺I、II、A和B以及C-H伸缩区域内使用了580个波数和18个因子。使用这两种方法的验证结果表明,α-螺旋含量预测的平均绝对误差为1.7%,β-折叠含量预测的平均绝对误差为2.3%。在开发和验证PCR模型后,将其用于预测两种未知物酪蛋白和免疫球蛋白G的α-螺旋和β-折叠含量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验