Suppr超能文献

存在血液代用品时脑微循环中氧运输的房室模型

A compartmental model for oxygen transport in brain microcirculation in the presence of blood substitutes.

作者信息

Sharan Maithili, Popel Aleksander S

机构信息

Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.

出版信息

J Theor Biol. 2002 Jun 21;216(4):479-500. doi: 10.1006/jtbi.2002.3001.

Abstract

A compartmental model is developed for oxygen (O(2)) transport in brain microcirculation in the presence of blood substitutes (hemoglobin-based oxygen carriers). The cerebrovascular bed is represented as a series of vascular compartments, on the basis of diameters, surrounded by a tissue compartment. A mixture of red blood cells (RBC) and plasma/extracellular hemoglobin solution flows through the vascular bed from the arterioles through the capillaries to the venules. Oxygen is transported by convection in the vascular compartments and by diffusion in the surrounding tissue where it is utilized. Intravascular resistance and the diffusive loss of oxygen from the arterioles to the tissue are incorporated in the model. The model predicts that most of the O(2) transport occurs at the level of capillaries. Results computed from the present model in the presence of hemoglobin-based oxygen carriers are consistent with those obtained from the earlier validated model (Sharan et al., 1989, 1998a) on oxygen transport in brain circulation in the absence of extracellular hemoglobin. We have found that: (a) precapillary PO(2) gradients increase as PO(2) in the arterial blood increases, P(50 p) (oxygen tension at 50% saturation of hemoglobin with O(2) in plasma) decreases, i.e. O(2) affinity of the extracellular hemoglobin is increased, the flow rate of the mixture decreases, hematocrit decreases at constant flow, metabolic rate increases, and intravascular transport resistance in the arterioles is neglected; (b) precapillary PO(2) gradients are not sensitive to (i) intracapillary transport resistance, (ii) cooperativity (n(p)) of hemoglobin with oxygen in plasma, (iii) hemoglobin concentration in the plasma and (iv) hematocrit when accounting for viscosity variation in the flow; (c) tissue PO(2) is not sensitive to the variation of intravascular transport resistance in the arterioles. We also found that tissue PO(2) is a non-monotonic function of the Hill coefficient n(p) for the extracellular hemoglobin with a maximum occurring when n(p) equals the blood Hill coefficient. The results of the computations give estimates of the magnitudes of the increases in tissue PO(2) as arterial PO(2) increases,P(50 p) increases, flow rate increases, hematocrit increases, hemoglobin concentration in the plasma increases, metabolic rate decreases, the capillary mass transfer coefficient increases or the intracapillary transport resistance decreases.

摘要

建立了一个分区模型,用于研究在存在血液替代品(基于血红蛋白的氧载体)的情况下脑微循环中氧气(O₂)的传输。脑血管床被表示为一系列基于直径的血管分区,周围环绕着一个组织分区。红细胞(RBC)与血浆/细胞外血红蛋白溶液的混合物从小动脉流经血管床,通过毛细血管到达小静脉。氧气在血管分区中通过对流传输,并在周围被利用的组织中通过扩散传输。血管内阻力以及氧气从小动脉向组织的扩散损失被纳入该模型。该模型预测,大部分O₂传输发生在毛细血管水平。在存在基于血红蛋白的氧载体的情况下,根据本模型计算的结果与早期验证的模型(Sharan等人,1989年,1998a)在不存在细胞外血红蛋白时脑循环中氧气传输的结果一致。我们发现:(a)当动脉血中的PO₂增加、P(50 p)(血浆中血红蛋白与O₂饱和度为50%时的氧张力)降低,即细胞外血红蛋白的O₂亲和力增加、混合物流速降低、在恒定流量下血细胞比容降低、代谢率增加且忽略小动脉中的血管内传输阻力时,毛细血管前PO₂梯度增加;(b)当考虑血流中的粘度变化时,毛细血管前PO₂梯度对(i)毛细血管内传输阻力、(ii)血红蛋白与血浆中氧气的协同性(n(p))、(iii)血浆中的血红蛋白浓度和(iv)血细胞比容不敏感;(c)组织PO₂对小动脉中血管内传输阻力的变化不敏感。我们还发现,组织PO₂是细胞外血红蛋白的希尔系数n(p)的非单调函数,当n(p)等于血液希尔系数时出现最大值。计算结果给出了随着动脉PO₂增加、P(50 p)增加、流速增加、血细胞比容增加、血浆中的血红蛋白浓度增加、代谢率降低、毛细血管传质系数增加或毛细血管内传输阻力降低时组织PO₂增加幅度的估计值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验